• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Residual U-Net을 이용한 토지피복지도 자동 제작 연구 (Automatic Generation of Land Cover Map Using Residual U-Net)

12 페이지
기타파일
최초등록일 2025.07.14 최종저작일 2020.10
12P 미리보기
Residual U-Net을 이용한 토지피복지도 자동 제작 연구
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 신뢰성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🛰️ 위성 및 항공영상 기반 토지피복지도 자동 제작 기술 소개
    • 🤖 Residual U-Net 딥러닝 기법을 활용한 혁신적인 분류 접근법
    • 📊 86.6% 높은 분류 정확도로 실무적 활용 가능성 입증

    미리보기

    서지정보

    · 발행기관 : 대한토목학회
    · 수록지 정보 : 대한토목학회논문집(국문) / 40권 / 5호 / 535 ~ 546페이지
    · 저자명 : 유수홍, 이지상, 배준수, 손홍규

    초록

    환경부에서는 위성영상과 항공영상을 이용하여 토지피복지도를 1998년부터 제작하여 배포하고 있으나, 권역별 제작 주기가 달라 활용성이 저하된다. 이에, 본 연구에서는 항공정사영상과 Landsat 8 위성영상을 이용하여, 토지피복지도를 자동으로 생성하기 위한 연구를 수행하였다. 토지피복지도를 자동적으로 제작하기 위하여 딥러닝 기반 세그먼테이션 방법의 하나인 Residual U-Net을 활용하였다. 토지피복지도의 제작 시기와 가장 근접한 시기의 항공 및 위성영상을 신경망을 통하여 학습하고, 학습결과를 3가지 실험군으로 나누어 토지피복지도와 비교하여 정확도 평가를 수행하였다. 첫 번째 군으로 대분류 7개 전체를 활용한 결과의 경우, 선행연구에서 대분류 4개에만 적용된 결과보다도 향상된 86.6 % 의 분류 정확도를 나타내었다. 중분류를 일부 포함한 2개의 실험군의 경우에는 71 %의 정확도를 나타내었다. 본 연구 결과를 바탕으로 신경망을 활용한 대분류 항목에 대한 자동 분류 가능성을 제시하였으며, 중분류 및 세분류에 대한 기초연구로 활용이 가능할 것으로 판단된다

    영어초록

    Land cover maps are derived from satellite and aerial images by the Ministry of Environment for the entire Korea since 1998. Even with their wide application in many sectors, their usage in research community is limited. The main reason for this is the map compilation cycle varies too much over the different regions. The situation requires us a new and quicker methodology for generating land cover maps. This study was conducted to automatically generate land cover map using aerial ortho-images and Landsat 8 satellite images. The input aerial and Landsat 8 image data were trained by Residual U-Net, one of the deep learning-based segmentation techniques. Study was carried out by dividing three groups. First and second group include part of level-II (medium) categories and third uses group level-III (large) classification category defined in land cover map. In the first group, the results using all 7 classes showed 86.6 % of classification accuracy The other two groups, which include level-II class, showed 71 % of classification accuracy. Based on the results of the study, the deep learning-based research for generating automatic level-III classification was presented.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한토목학회논문집(국문)”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 13일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:33 오후