• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

바이스태틱 레이다 측정 신호를 이용한 표적 인식에 관한 연구 (A Study on the Target Recognition Using Bistatic Measured Radar Signals)

8 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2012.08
8P 미리보기
바이스태틱 레이다 측정 신호를 이용한 표적 인식에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국전자파학회
    · 수록지 정보 : 한국전자파학회 논문지 / 23권 / 8호 / 1002 ~ 1009페이지
    · 저자명 : 이성준, 이승재, 최인식

    초록

    본 연구는 미시간 주립대(Michigan State University)의 바이스태틱 레이다 시스템을 통하여 수집한 측정 데이터를 이용한 표적 구분에 관한 연구 결과이다. 본 연구에서는 먼저 F-14, Mig-29, F-22 스케일 모델에 대하여 30°, 60°, 90° 바이스태틱 각도에서의 측정을 수행하였다. 측정한 데이터로부터 시간-주파수 영역 해석법인 단시간 퓨리에 변환(Short Time Fourier Transform)과 연속 웨이브릿 변환(Continous Wavelet Transform)을 이용하여 특성 벡터를 추출하고, 신경망 구분기를 통하여 표적 구분 실험을 수행하였다. 실험 결과, 바이스태틱 각도에 따라 표적 구분 성능에 많은 변화가 있으며, 특히, 60° 바이스태틱 각도에서 가장 좋은 구분 성능을 가짐을 알 수 있었다.

    영어초록

    This paper shows the research about radar target recognition using the measured radar signals from MSU(Michgan State University) bistatic radar system. In this research, we first did the bistatic measurements at 30°, 60°, 90° using F-14, Mig-29, and F-22 scale models. Then, we extract the target feature vectors using time-frequency analysis methods such as STFT(Short Time Fourier Transform) and CWT(Continous Wavelet Transform) and perform the target classification test using MLP(Multi-layerd Perceptron) neural network. The results show that the target classification performance is too much dependent on the bistatic angles and the best performance is obtained at the 60° bistatic angle.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자파학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 20일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:23 오후