• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

SSD 기반 서버급 스토리지를 위한 지역성 기반 청킹 정책을 이용한 데이터 중복 제거 기법 (Data Deduplication Method using Locality-based Chunking policy for SSD-based Server Storages)

9 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2013.02
9P 미리보기
SSD 기반 서버급 스토리지를 위한 지역성 기반 청킹 정책을 이용한 데이터 중복 제거 기법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 SSD 스토리지의 중복 제거 기술에 대한 혁신적인 접근법 제시
    • 💡 실제 성능 개선 및 전력 소모 감소 방법론 제공
    • 🖥️ 서버급 스토리지 최적화를 위한 실무적 연구 결과 분석

    미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 50권 / 2호 / 143 ~ 151페이지
    · 저자명 : 이승규, 김주경, 김덕환

    초록

    낸드 플래시 기반 SSD(Solid State Drive)는 빠른 입출력 성능, 저전력 등의 장점을 가지고 있어, 타블릿, 데스크탑 PC, 스마트폰, 서버 등의 저장장치로 널리 사용되고 있다. 하지만 SSD는 쓰기 횟수에 따라서 마모도가 증가하는 단점이 있다. SSD의 수명을 향상시키기 위해 다양한 데이터 중복제거 기법이 도입되었으나, 일반적인 고정 크기 분할방식은 데이터의 지역성을 고려하지 않고 청크크기를 할당함으로써, 불필요한 청킹 및 해시값 생성을 수행하는 문제점이 있으며, 가변 크기 분할방식은 중복제거를 위해 바이트 단위로 비교하여 과도한 연산량을 유발한다. 본 논문에서는 SSD 기반 서버급 스토리지에서 쓰기 요청된 데이터의 지역성에 기반한 적응형 청킹 정책을 제안한다. 제안한 방법은 중복데이터가 가지는 응용프로그램 및 파일 이름 기반 지역성에 따라 청크 크기를 4KB 또는 64KB로 적응적으로 분할하여, 청킹 및 해시값 생성에 따른 오버헤드를 감소시키고, 중복 쓰기를 방지한다. 실험결과, 제안하는 기법이 기존의 가변 크기 분할 및 4KB의 고정 크기 분할을 이용한 중복제거 기법보다 SSD의 쓰기 성능이 향상되고 전력 소모 및 연산시간을 감소시킬 수 있음을 보여준다.

    영어초록

    NAND flash-based SSDs (Solid State Drive) have advantages of fast input/output performance and low power consumption so that they could be widely used as storages on tablet, desktop PC, smart-phone, and server. But, SSD has the disadvantage of wear-leveling due to increase of the number of writes. In order to improve the lifespan of the SSD, a variety of data deduplication techniques have been introduced. General fixed-size splitting method allocates fixed size of chunk without considering locality of data so that it may execute unnecessary chunking and hash key generation, and variable-size splitting method occurs excessive operation since it compares data byte-by-byte for deduplication. This paper proposes adaptive chunking method based on application locality and file name locality of written data in SSD-based server storage. The proposed method split data into 4KB or 64KB chunks adaptively according to application locality and file name locality of duplicated data so that it can reduce the overhead of chunking and hash key generation and prevent duplicated data writing. The experimental results show that the proposed method can enhance write performance, reduce power consumption and operation time compared to existing variable-size splitting method and fixed size splitting method using 4KB.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:57 오후