• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스 (Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques)

12 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2011.03
12P 미리보기
소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 논리성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔍 학술 연구의 키워드 검색 문제점을 혁신적으로 접근
    • 🌐 소셜 네트워크와 데이터 마이닝 기법을 활용한 독창적 방법론
    • 🔗 키워드 간 복합적 연결 관계를 심층적으로 분석

    미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 17권 / 1호 / 127 ~ 138페이지
    · 저자명 : 조인동, 김남규

    초록

    대부분의 연구포털 사이트는 관심 분야의 논문을 획득하고자 하는 연구자를 대상으로 한 서비스를 주로 제공하고 있다. 하지만 이러한 서비스는 정확한 서지사항을 알고 있는 일부 사용자의 경우 손쉽게 이용할 수 있지만, 대부분의 이용자는 원하는 자료를 획득하기 위해 키워드 검색을 통한 반복적 시행착오를 겪게 된다. 특히 사용자가 익숙하지 않은 분야의 논문을 검색하는 경우에는, 찾고자 하는 논문의 적절한 키워드 자체를 알지 못하여 검색에 큰 어려움을 겪게 된다. 이러한 한계를 극복하기 위해 일부 연구포털 사이트에서는 온라인 쇼핑몰의 상품 추천에 주로 사용되어 온 연관관계 분석 기반 키워드 추천 서비스를 채택하고 있다. 하지만 연관관계 분석에만 기반한 키워드 추천 방식은 두 키워드간의 단편적인 관계만을 알려줄 뿐, 해당 학술 분야와 관련된 전체 키워드 간의 복합적 연결 관계를 보여주기에는 한계가 있다. 따라서 본 논문에서는 연관관계 분석을 통해 빈발 출현 키워드 쌍을 추출하고 이를 근거로 전체 키워드 간 네트워크를 구축함으로써, 학술 분야별 중심 키워드 및 분야 간 융합을 위한 연계 키워드를 추천하기 위한 방법을 제시하고자 한다.

    영어초록

    The core service of most research portal sites is providing relevant research papers to various researchers that match their research interests. This kind of service may only be effective and easy to use when a user can provide correct and concrete information about a paper such as the title, authors, and keywords. However, unfortunately, most users of this service are not acquainted with concrete bibliographic information. It implies that most users inevitably experience repeated trial and error attempts of keyword‐based search. Especially, retrieving a relevant research paper is more difficult when a user is novice in the research domain and does not know appropriate keywords. In this case, a user should perform iterative searches as follows : i) perform an initial search with an arbitrary keyword, ii) acquire related keywords from the retrieved papers, and iii) perform another search again with the acquired keywords. This usage pattern implies that the level of service quality and user satisfaction of a portal site are strongly affected by the level of keyword management and searching mechanism.
    To overcome this kind of inefficiency, some leading research portal sites adopt the association rule mining‐based keyword recommendation service that is similar to the product recommendation of online shopping malls. However, keyword recommendation only based on association analysis has limitation that it can show only a simple and direct relationship between two keywords. In other words, the association analysis itself is unable to present the complex relationships among many keywords in some adjacent research areas.
    To overcome this limitation, we propose the hybrid approach for establishing association network among keywords used in research papers. The keyword association network can be established by the following phases : i) a set of keywords specified in a certain paper are regarded as co‐purchased items, ii) perform association analysis for the keywords and extract frequent patterns of keywords that satisfy predefined thresholds of confidence, support, and lift, and iii) schematize the frequent keyword patterns as a network to show the core keywords of each research area and connecting keywords among two or more research areas. To estimate the practical application of our approach, we performed a simple experiment with 600 keywords. The keywords are extracted from 131 research papers published in five prominent Korean journals in 2009. In the experiment, we used the SAS Enterprise Miner for association analysis and the R software for social network analysis. As the final outcome, we presented a network diagram and a cluster dendrogram for the keyword association network. We summarized the results in Section 4 of this paper.
    The main contribution of our proposed approach can be found in the following aspects : i) the keyword network can provide an initial roadmap of a research area to researchers who are novice in the domain, ii) a researcher can grasp the distribution of many keywords neighboring to a certain keyword, and iii) researchers can get some idea for converging different research areas by observing connecting keywords in the keyword association network. Further studies should include the following. First, the current version of our approach does not implement a standard meta‐dictionary. For practical use, homonyms, synonyms, and multilingual problems should be resolved with a standard meta‐dictionary. Additionally, more clear guidelines for clustering research areas and defining core and connecting keywords should be provided. Finally, intensive experiments not only on Korean research papers but also on international papers should be performed in further studies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:25 오전