• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

컴퓨터공학 분야 학술 논문 데이터베이스를 이용한 키워드 연관 네트워크 기반 지식지도 (A Knowledge Map Based on a Keyword-Relation Network by Using a Research Paper Database in the Computer Engineering Field)

8 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2011.12
8P 미리보기
컴퓨터공학 분야 학술 논문 데이터베이스를 이용한 키워드 연관 네트워크 기반 지식지도
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 논리성
    • 전문성
    • 구성
    • 유사도 지수
      참고용 안전
    • 🔬 컴퓨터공학 분야의 연구동향을 혁신적인 방법으로 분석
    • 📊 키워드 연관 네트워크를 통한 깊이 있는 학술 인사이트 제공
    • 🧠 전통적인 분석 방식과 차별화된 지식지도 접근법 제시

    미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회논문지D / 18권 / 6호 / 501 ~ 508페이지
    · 저자명 : 정보석, 권영근, 곽승진

    초록

    최근 여러 분야에서 활용되고 있는 지식지도는 대량의 정보 속에 숨겨진 특징을 찾아서 그 의미를 파악할 수 있도록 가시적인 형태의 결과를 보여주는 것을 말한다. 본 논문에서는 2000년부터 2010년까지 컴퓨터 공학 분야의 국내 학술지에 게재된 논문들의 데이터베이스를 활용하여연구동향 분석을 위한 키워드 연관 네트워크 기반의 지식지도를 제안하였다. 그 지식지도를 통해 키워드 연관 네트워크에서 개별 키워드가 속한 연결 요소의 크기 변화를 살펴봄으로써 관련 연구 주제의 영향력 변화를 추론할 수 있었다. 또한, 랜덤 네트워크와의 비교를 통해 키워드연관 네트워크에서 최대 연결 요소의 크기가 상대적으로 매우 작으며, 상호 관련성이 높은 키워드 쌍들의 그룹이 밀집되어 있음을 보였다. 이는 최대 연결 요소에 대응하는 연구 분야가 크지 않으며 여러 소규모의 연구 주제들이 느슨한 형태로 연결되어 있음을 암시한다. 이러한 분석 결과들은 단순히 개별 키워드의 사용 빈도수 등을 분석하는 전통적인 방식으로는 얻기 어렵다는 점에서 본 논문에서 제안한 지식지도가 연구동향 분석의 방법이 될 수 있다.

    영어초록

    A knowledge map, which has been recently applied in various fields, is discovering characteristics hidden in a large amount of information and showing a tangible output to understand the meaning of the discovery. In this paper, we suggested a knowledge map for research trend analysis based on keyword-relation networks which are constructed by using a database of the domestic journal articles in the computer engineering field from 2000 through 2010. From that knowledge map, we could infer influential changes of a research topic related a specific keyword through examining the change of sizes of the connected components to which the keyword belongs in the keyword-relation networks. In addition, we observed that the size of the largest connected component in the keyword-relation networks is relatively small and groups of high-similarity keyword pairs are clustered in them by comparison with the random networks. This implies that the research field corresponding to the largest connected component is not so huge and many small-scale topics included in it are highly clustered and loosely-connected to each other. our proposed knowledge map can be considered as a approach for the research trend analysis while it is impossible to obtain those results by conventional approaches such as analyzing the frequency of an individual keyword

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회논문지D”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:43 오전