• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법 (A Method for Body Keypoint Localization based on Object Detection using the RGB-D information)

8 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2017.12
8P 미리보기
RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🤖 딥러닝 기반 인간 행위 인식 기술에 대한 혁신적인 접근법 제시
    • 📡 RGB-D 정보를 활용한 객체 탐지 및 키포인트 검출 방법론 소개
    • 🔬 Convolutional Pose Machines(CPM) 기술을 활용한 신체 키포인트 분석 방법론

    미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 18권 / 6호 / 85 ~ 92페이지
    · 저자명 : 박서희, 전준철

    초록

    최근 영상감시 분야에서는 영상에서 움직이는 사람을 탐지하고, 탐지된 사람의 행위를 분석하는 방식에 딥러닝 기반 학습방법이적용되기 시작했다. 이러한 지능형 영상분석 기술을 적용할 수 있는 분야 중 하나인 인간 행위 인식은 객체를 탐지하고 탐지된 객체의 행위를 인식하기 위해 신체 키포인트를 검출 하는 과정을 거치게 된다. 본 논문에서는 RGB-D 정보를 이용한 객체 탐지 기반의신체 키포인트 검출 방법을 제시한다. 먼저, 두 대의 카메라로 생성된 색상정보와 깊이정보를 이용하여 이동하는 객체를 배경으로부터 분할하여 탐지한다. RGB-D 정보를 이용하여 탐지된 객체의 영역을 재조정하여 생성된 입력 데이터를 한 사람의 자세 추정을 위한Convolutional Pose Machines(CPM)에 적용한다. CPM을 이용하여 한 사람당 14개의 신체부위에 대한 신념 지도(Belief Map)를 생성하고, 신념 지도를 기반으로 신체 키포인트를 검출한다. 이와 같은 방법은 키포인트를 검출할 객체에 대한 정확한 영역을 제공하게 되며, 개별적인 신체 키포인트의 검출을 통하여 단일 신체 키포인트 검출에서 다중 신체 키포인트 검출로 확장 할 수 있다. 향후, 검출된 키포인트를 이용하여 인간 자세 추정을 위한 모델을 생성할 수 있으며 인간 행위 인식 분야에 기여 할 수 있다.

    영어초록

    Recently, in the field of video surveillance, a Deep Learning based learning method has been applied to a method of detecting a moving person in a video and analyzing the behavior of a detected person. The human activity recognition, which is one of the fields this intelligent image analysis technology, detects the object and goes through the process of detecting the body keypoint to recognize the behavior of the detected object. In this paper, we propose a method for Body Keypoint Localization based on Object Detection using RGB-D information. First, the moving object is segmented and detected from the background using color information and depth information generated by the two cameras. The input image generated by rescaling the detected object region using RGB-D information is applied to Convolutional Pose Machines for one person's pose estimation. CPM are used to generate Belief Maps for 14 body parts per person and to detect body keypoints based on Belief Maps. This method provides an accurate region for objects to detect keypoints an can be extended from single Body Keypoint Localization to multiple Body Keypoint Localization through the integration of individual Body Keypoint Localization. In the future, it is possible to generate a model for human pose estimation using the detected keypoints and contribute to the field of human activity recognition.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:13 오전