• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

클라우드 컴퓨팅과 기계학습 기법을 이용한 주식의 기술적 분석 지표 최적화 및 주가 추세 변동 예측 (The Optimization of Technical Analysis Indicators and Stock Trend Prediction Using Machine Learning and Cloud Computing)

6 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2024.10
6P 미리보기
클라우드 컴퓨팅과 기계학습 기법을 이용한 주식의 기술적 분석 지표 최적화 및 주가 추세 변동 예측
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 📊 주식 시장 트렌드 예측을 위한 최신 기계학습 접근법 제시
    • 🤖 다양한 기술적 분석 지표의 유전 알고리즘 최적화 방법론 소개
    • 💡 실제 백테스트 결과를 통한 구체적인 성과 데이터 제공

    미리보기

    서지정보

    · 발행기관 : 한국사물인터넷학회
    · 수록지 정보 : 사물인터넷융복합논문지 / 10권 / 5호 / 13 ~ 18페이지
    · 저자명 : 김훈희

    초록

    국내 주식 시장에서 트렌드 예측을 위한 기계학습 모델의 활용 사례가 점점 증가하고 있다. 특히, 주가 데이터와같은 복잡한 시계열 데이터를 분석하고 예측하기 위해서는 기계학습을 활용하는 것이 필수적이다. 본 연구에서는 클라우드 컴퓨팅 서비스를 활용한 금융 데이터 수집 및 금융 시계열 추세 예측을 위한 기계학습 시스템을 제안한다. 먼저, 데이터 수집을 위해 Amazon Web Services(AWS)의 서버리스 서비스를 활용하였으며, 기술적 분석 지표(Relative Strength Index(RSI), Simple Moving Average(SMA), 볼린저 밴드, Rate Of Change(ROC), Golden Cross and Dead Cross(GDC), Stochastic Oscillator(STOCH), Moving Average Convergence Divergence(MACD), Detrended Price Oscillator(DPO))의 임계치를 유전 알고리즘을 통해 최적화 하였다. 이후 최적화된 지표들을 Echo State Network(ESN), Recurrent Neural Network(RNN), 그리고 다양한 기계학습 분류 모델의 학습 데이터로 사용하여 각 종목의 추세를 예측하였다. 예측된 추세를 바탕으로 백테스트를 진행한 결과, 평균 수익률은 ESN이 334%, RNN이 175%, 그리고 분류 모델이 199%를 기록하였다. 따라서 본 연구는 국내 주식 투자에서도 기계학습이 높은 예측력을 보이며 다양한 활용 가능성을 지니고 있음을 시사 하였다.

    영어초록

    The application of machine learning models for trend prediction in the domestic stock market is increasing. In particular, utilizing machine learning is essential for analyzing and predicting complex time-series data, such as stock price data. This study proposes a machine learning system for financial time-series trend prediction, utilizing cloud computing services. First, for data collection, the serverless service of Amazon Web Services was employed, and the thresholds of technical analysis indicators were optimized through a genetic algorithm. The optimized indicators were then used as training data for Echo State Network, Recurrent Neural Network (RNN), and various machine learning classification models to predict the trend of each stock. Based on the predicted trends, backtesting was conducted, and the results showed that the average returns were 334% for ESN, 175% for RNN, and 199% for classification models. Therefore, this study suggests that machine learning exhibits high predictive power in domestic stock investment and holds various potential applications.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“사물인터넷융복합논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 18일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:08 오전