• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

15 페이지
기타파일
최초등록일 2025.07.12 최종저작일 2013.12
15P 미리보기
소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🌐 소셜 미디어와 뉴스 콘텐츠의 혁신적인 접근 방법 제시
    • 🔍 시간 종속적 메타데이터를 활용한 컨텍스트 공유 프레임워크 제안
    • 💡 사용자 경험 개선을 위한 실용적인 기술 연구

    미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 19권 / 4호 / 39 ~ 53페이지
    · 저자명 : 가명현, 오경진, 홍명덕, 조근식

    초록

    인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.

    영어초록

    The emergence of the internet technology and SNS has increased the information flow and has changed the way people to communicate from one-way to two-way communication. Users not only consume and share the information, they also can create and share it among their friends across the social network service. It also changes the Social Media behavior to become one of the most important communication tools which also includes Social TV. Social TV is a form which people can watch a TV program and at the same share any information or its content with friends through Social media. Social News is getting popular and also known as a Participatory Social Media. It creates influences on user interest through Internet to represent society issues and creates news credibility based on user's reputation. However, the conventional platforms in news services only focus on the news recommendation domain. Recent development in SNS has changed this landscape to allow user to share and disseminate the news. Conventional platform does not provide any special way for news to be share. Currently, Social News Service only allows user to access the entire news. Nonetheless, they cannot access partial of the contents which related to users interest. For example user only have interested to a partial of the news and share the content, it is still hard for them to do so. In worst cases users might understand the news in different context. To solve this, Social News Service must provide a method to provide additional information. For example, Yovisto known as an academic video searching service provided time dependent metadata from the video. User can search and watch partial of video content according to time dependent metadata. They also can share content with a friend in social media. Yovisto applies a method to divide or synchronize a video based whenever the slides presentation is changed to another page. However, we are not able to employs this method on news video since the news video is not incorporating with any power point slides presentation. Segmentation method is required to separate the news video and to creating time dependent metadata. In this work, In this paper, a time dependent metadata-based framework is proposed to segment news contents and to provide time dependent metadata so that user can use context information to communicate with their friends. The transcript of the news is divided by using the proposed story segmentation method. We provide a tag to represent the entire content of the news. And provide the sub tag to indicate the segmented news which includes the starting time of the news. The time dependent metadata helps user to track the news information. It also allows them to leave a comment on each segment of the news. User also may share the news based on time metadata as segmented news or as a whole. Therefore, it helps the user to understand the shared news. To demonstrate the performance, we evaluate the story segmentation accuracy and also the tag generation. For this purpose, we measured accuracy of the story segmentation through semantic similarity and compared to the benchmark algorithm. Experimental results show that the proposed method outperforms benchmark algorithms in terms of the accuracy of story segmentation. It is important to note that sub tag accuracy is the most important as a part of the proposed framework to share the specific news context with others. To extract a more accurate sub tags, we have created stop word list that is not related to the content of the news such as name of the anchor or reporter. And we applied to framework. We have analyzed the accuracy of tags and sub tags which represent the context of news. From the analysis, it seems that proposed framework is helpful to users for sharing their opinions with context information in Social media and Social news.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:36 오전