PARTNER
검증된 파트너 제휴사 자료

컨텍스트 기반 협력적 필터링을 이용한 추천 시스템 (A Recommendation System using Context-based Collaborative Filtering)

6 페이지
기타파일
최초등록일 2025.07.12 최종저작일 2011.04
6P 미리보기
컨텍스트 기반 협력적 필터링을 이용한 추천 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 21권 / 224 ~ 229페이지
    · 저자명 : 이세일, 이상용

    초록

    협력적 필터링은 잠재적인 항목을 추천할 수 있어서 추천시스템에 가장 많이 사용되고 있다. 그러나 협력적 필터링은 평가항목이 적을 경우, 평가자의 상황이나 기분에 따라 유사도나 선호도에 큰 영향을 끼칠 수 있다. 또한 사용자의 현재 상황을 전혀 고려하지 않고 과거에 평가한 항목만으로 유사도를 계산하여 추천하여 추천의 정확도가 떨어지게 된다.
    본 논문에서는 위와 같은 문제점을 해결하기 위해, 먼저 협력적 필터링 과정을 수행하기 전 사용자들이 평가한 모든 값을비교하지 않고 평균 이상인 사용자들만을 비교하여 유사도를 계산함으로써 추천의 정확성을 높였다. 또한 끊임없이 변화하는 유비쿼터스 컴퓨팅 환경에서 사용자의 평가 항목만으로 서비스 정보를 추천하는 것이 적합하지 않기 때문에, 사용자의실시간 컨텍스트 정보를 이용하여 비슷한 사용자들에게 높은 가중치를 적용하여 유사도를 구하는 방법을 사용하였다. 이러한 방법을 사용한 결과, 추천의 정확도가 평균적으로 16.2% 향상되었다.

    영어초록

    Collaborative filtering is used the most for recommendation systems because it can recommend potential items.
    However, when there are not many items to be evaluated, collaborative filtering can be subject to the influence of similarity or preference depending on the situation or the whim of the evaluator. In addition, by recommending items only on the basis of similarity with items that have been evaluated previously without relation to the present situation of the user, the recommendations become less accurate.
    In this paper, in order to solve the above problems, before starting the collaborative filtering procedure, we calculated similarity not by comparing all the values evaluated by users but rather by comparing only those users who were above the average in order to improve the accuracy of the recommendations. In addition, in the ceaselessly changing ubiquitous computing environment, it is not proper to recommend service information based only on the items evaluated by users. Therefore, we used methods of calculating similarity wherein the users' real time context information was used and a high weight was assigned to similar users. Such methods improved the recommendation accuracy by 16.2% on average.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:43 오전