• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

객체 검출을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측 (Object Size Prediction based on Statistics Adaptive Linear Regression for Object Detection)

13 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2021.03
13P 미리보기
객체 검출을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 최신 객체 검출 알고리즘의 혁신적인 접근법 제시
    • 💡 기존 딥러닝 모델의 한계점을 개선하는 선형 회귀 모델 제안
    • 🎯 실제 데이터셋(UFPR-ALPR)을 통한 성능 검증

    미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 26권 / 2호 / 184 ~ 196페이지
    · 저자명 : 권용혜, 이종석, 심동규

    초록

    본 논문은 객체 검출 알고리즘을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측 방법을 제안한다. 기존에 제안된 딥 러닝 기반 객체 검출 알고리즘 중 YOLOv2 및 YOLOv3은 객체의 크기를 예측하기 위하여 네트워크의 마지막 계층에 통계치 적응적인 지수 회귀 모델을 사용한다. 하지만, 지수 회귀 모델은 역전파 과정에서 지수 함수의 특성상 매우 큰 미분값을 네트워크의 파라미터로 전파시킬 수 있는 문제점이 있다. 따라서 본 논문에서는 미분 값의 발산 문제를 해결하기 위하여 객체 크기 예측을 위한 통계치 적응적인 선형 회귀 모델을 제안한다. 제안하는 통계치 적응적인 선형 회귀 모델은 딥러닝 네트워크의 마지막 계층에 사용되며, 학습 데이터셋에 존재하는 객체들의 크기에 대한 통계치를 이용하여 객체의 크기를 예측한다. 제안하는 방법의 성능 평가를 위하여 YOLOv3 tiny를 기반으로 제안하는 방법을 적용하여 재설계한 네트워크의 검출 성능과 YOLOv3 tiny의 검출 성능을 비교하였으며, 성능 비교를 위한 데이터셋으로는 UFPR-ALPR 데이터셋을 사용하였다. 실험을 통해 제안하는 방법의 우수성을 검증하였다.

    영어초록

    This paper proposes statistics adaptive linear regression-based object size prediction method for object detection. YOLOv2 and YOLOv3, which are typical deep learning-based object detection algorithms, designed the last layer of a network using statistics adaptive exponential regression model to predict the size of objects. However, an exponential regression model can propagate a high derivative of a loss function into all parameters in a network because of the property of an exponential function. We propose statistics adaptive linear regression layer to ease the gradient exploding problem of the exponential regression model. The proposed statistics adaptive linear regression model is used in the last layer of the network to predict the size of objects with statistics estimated from training dataset. We newly designed the network based on the YOLOv3tiny and it shows the higher performance compared to YOLOv3 tiny on the UFPR-ALPR dataset.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:17 오전