• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

패치 기반 영상처리를 위한 텍스쳐 분류 알고리즘 (Texture Classification Algorithm for Patch-based Image Processing)

9 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2014.11
9P 미리보기
패치 기반 영상처리를 위한 텍스쳐 분류 알고리즘
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 영상처리 분야의 혁신적인 텍스쳐 분류 알고리즘 제안
    • 📊 기존 방법의 한계점을 명확히 분석하고 개선 방향 제시
    • 🚀 모의실험을 통해 8% 성능 향상 입증

    미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 51권 / 11호 / 146 ~ 154페이지
    · 저자명 : 유승완, 송병철

    초록

    텍스쳐 분류에 사용되는 방식 중 하나인 지역적 이진화 패턴은 일반적으로 영상 내의 평탄한 부분, 에지, 코너의 분포를 사용한다. 그러나 영상이 가지는 방향성을 고려하지 않고, 단순히 크고 작음만을 비교하는 지역적 이진화 패턴의 특성때문에 화소간 차이를 반영하지 못하는 문제점이 있다. 또한 영상의 분포를 사용하기 때문에 작은 크기의 영상에 대해서는 분류 성능이 저하된다. 이런 문제를 해결하기 위해 본 논문에서는 영상의 방향성 분포와 고유치 행렬을 이용한 세부 분류 기법을 제안한다. 지역적 이진화 패턴으로 초기 분류에서 누락된 텍스쳐 영상에 대하여 두 가지 특징을 이용하여 세부적으로 분류한다. 첫째, 영상이 가질 수 있는 방향을 여덟 가지로 양자화하고 그 방향들의 분포를 계산한다. 둘째, 구조 행렬을 이용하여 나온 고유치 중 큰 값의 분포를 구한다. 모의 실험을 통해 지역적 이진화 패턴만을 사용하였을 때 대비 제안 방법이 약 8% 정도 분류 정확도가 향상됨을 보였다.

    영어초록

    The local binary pattern (LBP) scheme that is one of the texture classification methods normally uses the distribution of flat, edge and corner patterns. However, it cannot examine the edge direction and the pixel difference because it is a sort of binary pattern caused by thresholding. Furthermore, since it cannot consider the pixel distribution, it shows lower performance as the image size becomes larger. In order to solve this problem, we propose a sub-classification method using the edge direction distribution and eigen-matrix. The proposed sub-classification is applied to the particular texture patches which cannot be classified by LBP. First, we quantize the edge direction and compute its distribution. Second, we calculate the distribution of the largest value among eigenvalues derived from structure matrix. Simulation results show that the proposed method provides a higher classification performance of about 8 % than the existing method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:51 오후