• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교 (Comparison of Forest Growing Stock Estimates by Distance-Weighting and Stratification in k-Nearest Neighbor Technique)

7 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2012.09
7P 미리보기
거리 가중치와 층화를 이용한 최근린기반 임목축적 추정치의 정확도 비교
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🌲 임업 및 산림 분야의 정밀한 임목축적 추정 방법론 제시
    • 📊 최근린 기법의 다양한 거리가중치 계수 비교 분석
    • 🔍 층화 방법에 따른 추정치 정확도의 체계적인 비교 연구

    미리보기

    서지정보

    · 발행기관 : 한국산림과학회
    · 수록지 정보 : 한국산림과학회지 / 101권 / 3호 / 374 ~ 380페이지
    · 저자명 : 임종수, 유병오, 신만용

    초록

    본 연구는 최근린 기법에서 거리가중치와 훈련자료의 층화에 의한 추정치의 정확도를 비교하여 효율적인 방법을 모색하기 위하여 수행하였다. 거리가중치의 경우, 유사성이 높은 훈련자료에 가중치를 부여하는 방법으로 일반적으로 적용되는 5가지의 계수(0, 0.5, 1, 1.5, 그리고 2)를 비교한 결과, 평균 편차에서 최대 ±0.6 m3/ha로 정확도는유사한 것으로 나타났다. 훈련자료의 층화에서는 임상구분을 적용하였을 때 추정치의 정확도가 가장 높은 것으로 나타났으며, 임상구분과 참조수평거리(반경=100 km)를 통합하여 적용하였을 경우에는 임상구분에 의한 추정치와 유사한 정확도를 나타내었다. 연구대상지의 2010년 기준 평균임목축적과 비교한 결과 최근린 기반 추정치가 약 5 m3/ha 정도 과소 추정되었지만, 조사시점을 고려하였을 때 상당한 정확도를 나타낸 것으로 평가된다.

    영어초록

    The k-Nearest Neighbor (kNN) technique is popularly applied to assess forest resources at the county level and to provide its spatial information by combining large area forest inventory data and remote sensing data. In this study, two approaches such as distance-weighting and stratification of training dataset, were compared to improve kNN-based forest growing stock estimates. When compared with five distance weights (0to 2 by 0.5), the accuracy of kNN-based estimates was very similar ranged ±0.6 m3/ha in mean deviation. The training dataset were stratified by horizontal reference area (HRA) and forest cover type, which were applied by separately and combined. Even though the accuracy of estimates by combining forest cover type and HRA-100 km was slightly improved, that by forest cover type was more efficient with sufficient number of training data. The mean of forest growing stock based kNN with HRA-100 and stratification by forest cover type when k=7 were somewhat underestimated (5 m3/ha) compared to statistical yearbook of forestry at 2011.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산림과학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:38 오후