• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

AI를 이용한 인구주택총조사의 자동 분류 개선: 산업 및 직업코드 연구 (Improving the Classification of Population and Housing Census with AI: An Industry and Job Code Study)

9 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2023.04
9P 미리보기
AI를 이용한 인구주택총조사의 자동 분류 개선: 산업 및 직업코드 연구
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 AI 기반 인구주택총조사 분류 시스템의 혁신적인 접근법 제시
    • 📊 86.76%의 산업 분류와 81.84%의 직업 분류 일치율 달성
    • 🚀 기존 규칙 기반 시스템 대비 효율성과 정확성 향상

    미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 28권 / 4호 / 21 ~ 29페이지
    · 저자명 : 윤병일, 김다혜, 김영진, 메다드, 정영섭

    초록

    본 논문에서는 인구 조사에서 산업 및 직업 코드를 자동 분류하기 위한 인공지능 기반 시스템을제안한다. 산업 및 직업 코드의 정확한 분류는 정책 결정, 자원 할당 및 연구를 위해 매우 중요하지만, 기존의 방식은 사람이 작성한 사례 사전에 의존하는 규칙 기반 방식으로 규칙 생성에 필요한시간과 자원이 많이 소요되며 오류 발생 가능성이 높다. 우리는 본 논문에서 통계 기관에서 사용하는 기존의 규칙 기반 시스템을 대체하기 위해 사용자가 입력한 데이터를 이용하는 인공지능 기반시스템을 제안하였다. 이 논문에서는 여러 모델을 학습하고 평가하여 산업에서 86.76%의 일치율, 직업에서 81.84%의 일치율을 달성한 앙상블 모델을 개발하였다. 또한, 분류 확률 결과를 기반으로프로세스 개선 작업도 제안하였다. 우리가 제안한 방법은 전이 학습 기술을 활용하여 사전 학습된모델과 결합하는 앙상블 모델을 사용하였으며, 개별 모델과 비교하여 앙상블 모델의 성능이 더 높아짐을 보였다. 본 논문에서는 인공지능 기반 시스템이 인구 조사 데이터 분류의 정확성과 효율성을 향상시키는 잠재력을 보여주며, 인공지능으로 이러한 프로세스를 자동화함으로써 더 정확하고일관된 결과를 달성하며 기관 직원의 작업 부담을 줄일 수 있다는 점을 보여준다.

    영어초록

    In this paper, we propose an AI-based system for automatically classifying industry and occupation codes in the population census. The accurate classification of industry and occupation codes is crucial for informing policy decisions, allocating resources, and conducting research. However, this task has traditionally been performed by human coders, which is time-consuming, resource-intensive, and prone to errors. Our system represents a significant improvement over the existing rule-based system used by the statistics agency, which relies on user-entered data for code classification. In this paper, we trained and evaluated several models, and developed an ensemble model that achieved an 86.76% match accuracy in industry and 81.84% in occupation, outperforming the best individual model. Additionally, we propose process improvement work based on the classification probability results of the model. Our proposed method utilizes an ensemble model that combines transfer learning techniques with pre-trained models. In this paper, we demonstrate the potential for AI-based systems to improve the accuracy and efficiency of population census data classification. By automating this process with AI, we can achieve more accurate and consistent results while reducing the workload on agency staff.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 11일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:15 오후