• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석 (Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower)

8 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2021.04
8P 미리보기
관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 첨단 기계학습 기법을 활용한 혁신적인 결함 진단 방법론 제시
    • 🏗️ 에너지 송전 인프라의 안전성 향상을 위한 실용적인 연구 접근
    • 🧠 유전자 알고리즘과 서포트 벡터 머신의 융합 기술 소개

    미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 25권 / 4호 / 515 ~ 522페이지
    · 저자명 : 민태홍, 유현탁, 김형진, 최병근, 김현식, 이기승, 강석근

    초록

    본 논문에서는 관형 철탑의 용접부 결함을 상시적으로 감시하기 위하여 초음파 탐상 신호에 대한 기계학습 알고리즘의 적용 방법을 제시하고 분석하였다. 기계학습 방법으로는 유전자 알고리즘에 의한 특징 선택과 서포트 벡터 머신을 이용한 탐상 신호 분류 방법을 사용하였다. 특징 선택에서는 30개의 후보 특징들 가운데 피크, 히스토그램 하한 경계, 정규 음로그우도가 선택되었으며, 이들은 결함의 깊이에 따른 신호의 차이를 명확하게 나타내었다. 또한, 선택된 특징들을 서포트 벡터 머신에 적용한 결과 정상 부위와 결함 부위를 완벽하게 분류할 수 있는 것으로 나타났다. 따라서 본 연구의 결과는 향후 초음파 신호 기반 결함 성장 조기 감지시스템의 개발과 이를 통한 에너지 송전 관련 산업에 유용하게 사용될 수 있을 것으로 기대된다.

    영어초록

    In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:24 오전