• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기계학습을 통한 여름철 노면상태 추정 알고리즘 개발 (Estimation of Road Surface Condition during Summer Season Using Machine Learning)

12 페이지
기타파일
최초등록일 2025.07.07 최종저작일 2018.12
12P 미리보기
기계학습을 통한 여름철 노면상태 추정 알고리즘 개발
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 신뢰성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🚗 교통안전과 직접적으로 연관된 노면상태 추정 알고리즘 제공
    • 🤖 기계학습 기반의 혁신적인 데이터 분석 방법론 소개
    • 💡 실무에 바로 적용 가능한 실증적 연구 결과 제시

    미리보기

    서지정보

    · 발행기관 : 한국ITS학회
    · 수록지 정보 : 한국ITS학회 논문지 / 17권 / 6호 / 121 ~ 132페이지
    · 저자명 : 여지호, 이주영, 김강화, 장기태

    초록

    기상은 교통흐름, 운전자의 주행패턴, 교통사고 등 여러 방면에서 도로교통에 영향을 미치는 중요한 요인이다. 본 연구는 기상상황과 노면상태 사이의 관계에 초점을 맞추어 기계학습을 통해 도로의 노면상태를 추정하는 모델을 개발하였다. 노면 상태의 수집을 위해 실험 차량에 노면센서를 부착하여 ‘건조’, ‘습윤’, ‘젖음’, 3가지 범주로 구분된 노면상태 정보를 수집하였고, 이를 추정하기 위한 변수로 도로의 기하구조 정보(곡률, 구배), 교통정보(교통량), 기상정보(강우량, 습도, 온도, 풍속)를 활용하였다. 노면 상태를 예측하기 위한 알고리즘으로는 다양한기계학습 알고리즘이 검토되었으며, 그 중 가장 높은 정확도를 보인 ‘Random forest’를 기반으로 한 2단계 분류모형을 구축하였다. 총 16일의 실측 데이터 중 14일의 데이터를 모델을 학습하는 데 활용하였고, 2일의 데이터를 모형의 정확도를 검증하기 위해 사용하였다. 그 결과81.74%의 검증 정확도를 가지는 노면상태 예측 모델을 구축하였다. 본 연구의 결과는 기상청에서 관측하는 기상정보로 도로의 노면상태를 추정할 수 있다는 가능성을 보여주며, 새로운장비나 센서를 설치하지 않고도 기존의 기상 관측 정보와 교통정보 등을 활용하여 노면의 상태를 추정할 수 있음을 시사한다.

    영어초록

    Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국ITS학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:32 오후