• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

MSE 추정에 기반한 적응적인 시간적 공간적 비디오 디노이징 필터 (Video De-noising Using Adaptive Temporal and Spatial Filter Based on Mean Square Error Estimation)

13 페이지
기타파일
최초등록일 2025.07.05 최종저작일 2012.11
13P 미리보기
MSE 추정에 기반한 적응적인 시간적 공간적 비디오 디노이징 필터
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 17권 / 6호 / 1048 ~ 1060페이지
    · 저자명 : 김창수, 김종호, 최윤식

    초록

    본 논문에서는 영상에 포함되어 있는 잡음을 효율적으로 제거하기 위해 원본 영상과 잡음이 포함된 영상 사이의 mean square error (MSE) 추정에 기반한 적응적인 시공간 디노이징 필터(Adaptive Temporal and Spatial De-noising Filter : ATSF)를 제안하였다. 제안하는 디노이징 필터는 잡음이 포함되어 있는 영상에 블록 단위로 적용되며, 시간적 필터인 Multi-Hypothesis Motion Compensated Filter (MHMCF)를 사용하고, 공간적 필터로는 bilateral filter를 사용하였다. 각각의 블록에 대해 시간적 필터와 공간적 필터 중에서 최적의 필터를 선택하기 위해서 잡음이 포함되지 않은 원본 영상과 잡음이 포함된 입력 영상 사이의 MSE를 추정하는 기법을 제안하였다. 디노이징 단계에서 원본 영상이 주어지지 않기 때문에 MSE를 추정하기 위해서, 본 논문에서는 MHMCF가 적용된 블록의 MSE를 수학적으로 예측하고, bilateral filter가 적용된 블록의 MSE를 통계적 선형 모델을 통해 예측하였다. 이렇게 예측된 MSE를 비교하여 더 작은 MSE를 갖는 필터를 선택적으로 매 단위 블록마다 적용하게 된다. 제안된 방법은 시간적 필터와 공간적 필터를 적응적으로 적용함으로써 기존의 디노이징 방법에 비해 객관적 화질 뿐만 아니라 주관적인 화질에서 우수한 성능을 보여준다.

    영어초록

    In this paper, an adaptive temporal and spatial filter (ATSF) based on mean square error (MSE) estimation is proposed. ATSF is a block based de-noising algorithm. Each noisy block is selectively filtered by a temporal filter or a spatial filter. Multi-hypothesis motion compensated filter (MHMCF) and bilateral filter are chosen as the temporal filter and the spatial filter, respectively. Although there is no original video, we mathematically derivate a formular to estimate the real MSE between a block de-noised by MHMCF and its original block and a linear model is proposed to estimate the real MSE between a block de-noised by bilateral filter and its original block. Finally, each noisy block is processed by the filter with a smaller estimated MSE. Simulation results show that our proposed algorithm achieves substantial improvements in terms of both visual quality and PSNR as compared with the conventional de-noising algorithms.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:28 오전