PARTNER
검증된 파트너 제휴사 자료

뮤직비디오 브라우징을 위한 중요 구간 검출 알고리즘 (Salient Region Detection Algorithm for Music Video Browsing)

7 페이지
기타파일
최초등록일 2025.07.05 최종저작일 2009.02
7P 미리보기
뮤직비디오 브라우징을 위한 중요 구간 검출 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 28권 / 2호 / 112 ~ 118페이지
    · 저자명 : 김형국, 신동

    초록

    본 논문은 모바일 단말기, Digital Video Recorder (DVR) 등에 적용할 수 있는 뮤직비디오 브라우징 시스템을 위한 실시간
    중요 구간 검출 알고리즘을 제안한다. 입력된 뮤직비디오는 음악 신호와 영상 신호로 분리되어 음악 신호에서는 에너지기반
    의 음악 특징값 최고점기반의 구조분석을 통해 음악의 후렴 구간을 포함하는 음악 하이라이트 구간을 검출하고, SVM
    AdaBoost 학습방식에서 생성된 모델을 이용해 음악신호를 분위기별로 자동 분류한다. 음악신호로부터 검출된 음악 하이라
    이트 구간과 영상신호로부터 검출된 가수, 주인공의 얼굴이 나오는 영상장면을 결합하여 최종적으로 중요구간이 결정된다.
    제안된 방식을 통해 사용자는 모바일 단말기나 DVR에 저장되어 있는 다양한 뮤직비디오들을 분위기별로 선택한 후에 뮤직
    비디오의 30초 내외의 중요구간을 빠르게 브라우징하여 자신이 원하는 뮤직비디오를 선택할 수 있게 된다. 제안된 알고리즘
    의 성능을 측정하기 위해 200개의 뮤직비디오를 정해진 수동 뮤직비디오 구간과 비교하여 MOS 테스트를 실행한 결과
    제안된 방식에서 검출된 중요 구간이 수동으로 정해진 구간보다 사용자 만족도 측면에서 우수한 결과를 나타내었다.

    영어초록

    This paper proposes a rapid detection algorithm of a salient region for music video browsing system, which can be
    applied to mobile device and digital video recorder (DVR). The input music video is decomposed into the music and
    video tracks. For the music track, the music highlight including musical chorus is detected based on structure analysis
    using energy-based peak position detection. Using the emotional models generated by SVM-AdaBoost learning
    algorithm, the music signal of the music videos is classified into one of the predefined emotional classes of the music
    automatically. For the video track, the face scene including the singer or actor/actress is detected based on a boosted
    cascade of simple features. Finally, the salient region is generated based on the alignment of boundaries of the
    music highlight and the visual face scene. First, the users select their favorite music videos from various music
    videos in the mobile devices or DVR with the information of a music video’s emotion and thereafter they can browse
    the salient region with a length of 30-seconds using the proposed algorithm quickly. A mean opinion score (MOS)
    test with a database of 200 music videos is conducted to compare the detected salient region with the predefined
    manual part. The MOS test results show that the detected salient region using the proposed method performed much
    better than the predefined manual part without audiovisual processing.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:56 오전