• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법 (Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model)

10 페이지
기타파일
최초등록일 2025.07.04 최종저작일 2022.12
10P 미리보기
얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보보호학회
    · 수록지 정보 : 정보보호학회논문지 / 32권 / 6호 / 1081 ~ 1090페이지
    · 저자명 : 서성관, 손배훈, 윤주범

    초록

    얼굴 인식 모델은 스마트폰의 신원 인식에 활용되는 등 많은 사용자에게 편의를 제공하고 있다. 이에 따라 DNN 모델의 보안성 검토가 중요해지고 있는데 DNN 모델의 잘 알려진 취약점으로 적대적 공격이 존재한다. 적대적 공격은 현재 DNN 모델의 인식 결과만을 이용하여 공격을 수행하는 의사결정 공격기법까지 발전하였다. 그러나 기존 의사결정 기반 공격기법[14]은 적대적 예제 생성 시 많은 질의 수가 필요한 문제점이 있다. 특히, 기울기를 근사하는데 많은 질의 수가 소모되는데 정확한 기울기를 구할 수 없는 문제가 존재한다. 따라서 본 논문에서는 기존 의사결정 공격기법의 기울기를 근사할 때 소모되는 질의 수 낭비를 막기 위해서 직교 공간 샘플링과 차원 축소 샘플링 방법을 제안한다. 실험 결과 섭동의 크기가 L2 distance 기준 약 2.4 적은 적대적 예제를 생성할 수 있었고 공격 성공률의 경우 약 14% 향상할 수 있었다. 실험 결과를 통해 본 논문에서 제안한 적대적 예제 생성방법의 같은 질의 수 대비 공격 성능이 우수함을 입증한다.

    영어초록

    The face recognition model is used for identity recognition of smartphones, providing convenience to many users. As a result, the security review of the DNN model is becoming important, with adversarial attacks present as a well-known vulnerability of the DNN model. Adversarial attacks have evolved to decision-based attack techniques that use only the recognition results of deep learning models to perform attacks. However, existing decision-based attack technique[14] have a problem that requires a large number of queries when generating adversarial examples. In particular, it takes a large number of queries to approximate the gradient. Therefore, in this paper, we propose a method of generating adversarial examples using orthogonal space sampling and dimensionality reduction sampling to avoid wasting queries that are consumed to approximate the gradient of existing decision-based attack technique[14]. Experiments show that our method can reduce the perturbation size of adversarial examples by about 2.4 compared to existing attack technique[14] and increase the attack success rate by 14% compared to existing attack technique[14]. Experimental results demonstrate that the adversarial example generation method proposed in this paper has superior attack performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보보호학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:10 오후