• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

문장 랭킹 스코어와 그래프 기법을 사용한 질의 기반 생성 요약 모델 (Query-based Abstractive Summarization Model Using Sentence Ranking Scores and Graph Techniques)

9 페이지
기타파일
최초등록일 2025.07.04 최종저작일 2020.12
9P 미리보기
문장 랭킹 스코어와 그래프 기법을 사용한 질의 기반 생성 요약 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 47권 / 12호 / 1172 ~ 1180페이지
    · 저자명 : 김기환, 고영중

    초록

    기본적인 생성 요약 모델은 문서 내 모든 중요 내용을 포함하는 짧은 요약문을 생성하는 것을 목표로 한다. 반면, 질의(Query) 기반 생성 요약 모델의 경우 문서 내에서 질의와 관련된 정보를 요약해야 한다. 기존의 질의 기반 요약 모델은 문서 내 단어들과 질의문 간의 어텐션(Attention) 메커니즘을 통해 단어의 가중치를 계산하고 이를 기반으로 문장의 중요도를 계산한다. 이러한 방식은 문서의 전체적인 문맥 정보를 반영하기 어렵다는 단점이 있다. 본 논문에서는 이러한 문제를 문장 랭킹 스코어와 문장 단위 그래프 구조를 만들어 문장의 중요도뿐만 아니라 문맥 정보를 반영하여 생성 요약의 성능을 향상시킬 수 있는 새로운 생성 요약 기법을 제안한다. 실험으로 살펴본 최종 제안 모델의 성능은 같은 데이터를 사용하는 선행 모델 대비 ROUGE-1 1.44%p, ROUGE-L 0.52%p의 향상된 성능을 보인다.

    영어초록

    The purpose of the fundamental abstractive summarization model is to generate a short summary document that includes all important contents within the document. Conversely, in the query-based abstractive summarization model, information related to the query should be selected and summarized within the document. The existing query-based summarization models calculates the importance of sentences using only the weight of words through an attention mechanism between words in the document and the query. This method has a disadvantage in that it is difficult to reflect the entire context information of the document to generate an abstractive summary. In this paper, we resolve this problems by calculating the sentence ranking scores and a sentence-level graph structure.
    Our proposed model shows higher performance than the previous research model, 1.44%p in ROUGE-1 and 0.52%p in ROUGE-L.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:10 오전