• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

선적분에 의한 위상차 영상의 줄무늬 아티팩트 감소를 위한 기계학습법에 대한 평가 (Evaluation of Machine Learning Methods to Reduce Stripe Artifacts in the Phase Contrast Image due to Line-Integration Process)

10 페이지
기타파일
최초등록일 2025.07.01 최종저작일 2020.12
10P 미리보기
선적분에 의한 위상차 영상의 줄무늬 아티팩트 감소를 위한 기계학습법에 대한 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국방사선학회
    · 수록지 정보 : 한국방사선학회논문지 / 14권 / 7호 / 937 ~ 946페이지
    · 저자명 : 김명근, 오오성, 이세호, 이승욱

    초록

    격자간섭계는 한 위상 물체에 의한 파두의 굴절변화로 인해 그 물체에 대한 미분 위상 영상을 제공하며, 이 미분 위상 영상은 위상 영상으로 전환되어야 할 필요가 있다. 미분 위상차 영상으로부터 위상차 영상을 얻기 위한 선적분 과정은 노이즈를 축적하고 줄무늬 아티팩트를 생성한다. 줄무늬 아티팩트는 선적분이 수행된 위상차 영상에서 적분 방향으로 노이즈와 왜곡이 증가한다. 이 연구에서는 이러한 아티팩트를 줄이기 위해 몇 가지 기계 학습 방법들을 구성하고 비교하였다. 기계 학습 방법들은 상호비교를 위하여 시뮬레이션 된 수치 팬텀과 엑스선 및 중성자 격자 간섭계로부터 얻어진 실험 데이터에 적용되었다. 그 결과 웨이블릿 전처리와 기계 학습 방법(WCNN)의 조합이 가장 효과적인 것으로 나타났다.

    영어초록

    The grating interferometer provides the differential phase contrast image of an phase object due to refraction of the wavefront by the object, and it needs to be converted to the phase contrast image. The line-integration process to obtain the phase contrast image from a differential phase contrast image accumulates noise and generate stripe artifacts. The stripe artifacts have noise and distortion increases to the integration direction in the line-integrated phase contrast image. In this study, we have configured and compared several machine learning methods to reduce the artifacts. The machine learning methods have been applied to simulated numerical phantoms as well as experimental data from the X-ray and neutron grating interferometer for comparison. As a result, the combination of the wavelet preprocessing and machine learning method (WCNN) has shown to be the most effective.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방사선학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:30 오전