PARTNER
검증된 파트너 제휴사 자료

CNN 기반의 준지도학습을 활용한 GPR 이미지 분류 (A Study on GPR Image Classification by Semi-supervised Learning with CNN)

10 페이지
기타파일
최초등록일 2025.07.01 최종저작일 2021.08
10P 미리보기
CNN 기반의 준지도학습을 활용한 GPR 이미지 분류
  • 미리보기

    서지정보

    · 발행기관 : 사)한국빅데이터학회
    · 수록지 정보 : 한국빅데이터학회 학회지 / 6권 / 1호 / 197 ~ 206페이지
    · 저자명 : 김혜미, 배혜림

    초록

    GPR(Ground Penetrating Radar)에서 수집된 데이터는 지하 탐사를 위해 사용된다. 이 때, 지반 아래의시설물들이 GPR을 반사하는 경우가 종종 발생하여 수집된 데이터는 전문가에 경험에 의존하여 해석된다.
    또한, GPR 데이터는 수집 장비, 환경 등에 따라 데이터의 노이즈, 특성 등이 다르게 나타난다. 이로 인해 정확한 레이블을 가지는 데이터가 충분히 확보되지 못하는 경우가 많다. 일반적으로 이미지 분류 문제에서 높은 성능을 보이는 인공신경망 모델을 적용하기 위해서는 많은 양의 학습 데이터가 확보되어야 한다.
    그러나 GPR 데이터의 특성 상 데이터에 정확한 레이블을 붙이는 것은 많은 비용을 필요로 하여 충분한 데이터를 확보하기가 어렵다. 이는 결국 일반적으로 활용되는 지도학습 방법을 기반으로 인공신경망을적절히 학습시킬 수 없게 한다.
    본 논문에서는 각 레이블의 정확도가 유사한 수준을 갖도록 하는 것을 목표로 데이터 특성을 바탕으로 하는 이미지 분류 방법을 제안한다. 제안 방법은 준지도학습을 기반으로 하고 있으며, 인공신경망으로부터이미지의 특징값을 추출한 후 클러스터링 기법을 활용하여 이미지를 분류한다. 이 방법은 라벨링 된 데이터가충분하지 않은 경우 라벨링할 때 뿐 만 아니라 데이터에 달린 레이블의 신뢰도가 높지 않은 경우에도 활용할 수 있다.

    영어초록

    GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels.
    Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods.
    This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국빅데이터학회 학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 01일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:59 오전