PARTNER
검증된 파트너 제휴사 자료

개발자 별 버그 해결 유형을 고려한 자동적 개발자 추천 접근법 (A Technique to Recommend Appropriate Developers for Reported Bugs Based on Term Similarity and Bug Resolution History)

12 페이지
기타파일
최초등록일 2025.06.23 최종저작일 2014.12
12P 미리보기
개발자 별 버그 해결 유형을 고려한 자동적 개발자 추천 접근법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 3권 / 12호 / 511 ~ 522페이지
    · 저자명 : 박성훈, 김정일, 이은주

    초록

    소프트웨어 개발 및 유지보수 과정에서 여러 종류의 버그가 발생된다. 버그는 소프트웨어의 개발 및 유지 보수 시간을 증가시키는 주요원인으로 소프트웨어의 품질 저하를 초래한다. 버그의 발생을 사전에 완벽하게 방지하는 것은 불가능하다. 대신 버그 질라(Bugzilla), 멘티스BT(MantisGBT), 트랙 (Trac), 질라 (JIRA)와 같은 버그 트래킹 시스템을 이용하여 버그를 효과적으로 관리하는 것이 가능하다. 개발자또는 사용자가 발생된 버그를 버그 트래킹 시스템에 보고하면, 프로젝트 매니저에 의해서 보고된 버그는 버그 해결에 적합한 개발자에게전달되어 해결될 때까지 버그 트래킹 시스템에 의해서 추척된다. 여기서 프로젝트 매니저가 버그 해결에 적합한 개발자를 선별하는 것을버그 분류 작업 (Bug triaging)이라고 하며, 대량으로 발생되는 버그 리포트들을 수동으로 분류하는 것은 프로젝트 매니저에게 있어서 매우어려운 문제가 된다. 본 논문에서는 버그 트래킹 시스템에 저장된 과거에 해결된 버그 리포트에서 개발자 별 버그 해결 유형을 추출하고,이를 활용한 버그 분류 작업, 즉 개발자 추천 방법을 제안한다. 먼저 버그 트래킹 시스템에서 각 개발자가 해결한 버그 리포트들을 분류한후, 자연 언어 처리 알고리즘과 TF-IDF (Term frequency–Inverse document frequency)를 활용하여 각 개발자 별 단어 리스트를 생성한다. 그 후, 새로운 버그가 발생되었을 때 코사인 유사도를 통해서 생성된 개발자 별 단어 리스트와 새로운 버그 리포트의 단어 리스트를 비교하여 가장 유사한 단어 리스트를 가지는 개발자를 추천하는 방법이다. 두 오픈 소스 프로젝트인 이클립스 JDT.UI와 CDT.CORE를 대상으로 수행한 개발자 추천 실험에서 기계 학습 모델 기반의 추천 방법보다 제안하는 방법이 더 우수한 결과를 얻은 것을 확인하였다.

    영어초록

    During the development of the software, a variety of bugs are reported. Several bug tracking systems, such as, Bugzilla, MantisBT,Trac, JIRA, are used to deal with reported bug information in many open source development projects. Bug reports in bug trackingsystem would be triaged to manage bugs and determine developer who is responsible for resolving the bug report. As the size of thesoftware is increasingly growing and bug reports tend to be duplicated, bug triage becomes more and more complex and difficult. Inthis paper, we present an approach to assign bug reports to appropriate developers, which is a main part of bug triage task. At first,words which have been included the resolved bug reports are classified according to each developer. Second, words in newly bugreports are selected. After first and second steps, vectors whose items are the selected words are generated. At the third step,TF-IDF(Term frequency - Inverse document frequency) of the each selected words are computed, which is the weight value of eachvector item. Finally, the developers are recommended based on the similarity between the developer’s word vector and the vector ofnew bug report. We conducted an experiment on Eclipse JDT and CDT project to show the applicability of the proposed approach. Wealso compared the proposed approach with an existing study which is based on machine learning. The experimental results show thatthe proposed approach is superior to existing method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:27 오전