• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

블록기반 압축센싱을 위한 율 할당 방법 (Rate Allocation for Block-based Compressive Sensing)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
10 페이지
기타파일
최초등록일 2025.06.18 최종저작일 2015.05
10P 미리보기
블록기반 압축센싱을 위한 율 할당 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 20권 / 3호 / 398 ~ 407페이지
    · 저자명 : Quang Hong Nguyen, Khanh Quoc Dinh, Viet Anh Nguyen, Chien Van Trinh, 박영현, 전병우

    초록

    희소성이 높은 신호를 압축센싱을 할 경우 기존의 Nyquist/Shannon 이론을 바탕으로 하는 샘플링 방법 보다 낮은 측정율 만으로도 신호의 복원이 가능하기 때문에 이를 활용한 많은 응용 연구가 이루어지고 있다. 영상신호의 경우 특히 블록기반 압축센싱 기법이 주로 고려되고 있는데, 대부분의 경우 측정 영역에서의 공간적 유사도가 동일하다는 가정 하에, 각 블록에 동일한 측정율을 할당하여 왔다. 이를 개선하기 위해, 본 논문에서는 프레임 내의 각 블록에 대하여 경계선 정보를 구하고, 각각의 특성에 따르는 적응적 샘플링 율 기법을 제안한다. 제안하는 방법은 측정영역에서의 블록 간 유사도를 구해서 경계선 정보를 많이 포함하는 블록일수록 많은 측정율을 할당한다. 실험 결과, 자연영상에 대해 제안하는 적응적 율 할당 기법은 고정 측정율을 사용한 기존 방법에 비해 객관적 (최대 3.29 dB 향상) 및 주관적 화질이 뛰어나다는 것을 보여준다.

    영어초록

    Compressive sensing (CS) has drawn much interest as a novel sampling technique that enables sparse signal to be sampled under the Nyquitst/Shannon rate. By noting that the block-based CS can still keep spatial correlation in measurement domain, this paper proposes to adapt sampling rate of each block in frame according to its characteristic defined by edge information. Specifically, those blocks containing more edges are assigned more measurements utilizing block-wise correlation in measurement domain without knowledge about full sampling frame. For natural image, the proposed adaptive rate allocation shows considerable improvement compared with fixed subrate block-based CS in both terms of objective (up to 3.29 dB gain) and subjective qualities.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 09일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:38 오후