• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

웹로그를 활용한 고속 하이브리드 해외여행 상품 추천시스템 (Rapid Hybrid Recommender System with Web Log for Outbound Leisure Products)

8 페이지
기타파일
최초등록일 2025.06.17 최종저작일 2016.12
8P 미리보기
웹로그를 활용한 고속 하이브리드 해외여행 상품 추천시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회 컴퓨팅의 실제 논문지 / 22권 / 12호 / 646 ~ 653페이지
    · 저자명 : 이규식, 윤지원

    초록

    해외여행시장은 매년 가파르게 성장하고 있는 산업중 하나이며 2016년 11조의 시장을 형성하고 있다. 거대한 시장형성과는 달리 해외여행상품 추천에 대한 국내연구는 전무한 상태이다. 많은 상품 추천 방법들이(협업적 필터링, 내용기반 필터링) 기존 구매 내역을 대상으로 하거나 혹은 상품의 유사성을 이용한 연구들이 주를 이루고 있다. 이러한 연구들은 연산할 데이터의 양이 많아질 경우 속도의 저하와 데이터가 충분히 확보되지 못한 상황 하에서는 좋은 성능을 보여주지 못하고 있다. 해외 여행상품의 특성상 1-2년에 한번정도의 구매패턴과 상품들의 가격대가 상대적으로 높으며, 동일 상품의 구매가 거의 없는 특징이 있기 때문에 일반적인 상품추천 시스템의 고객 프로파일링 방법으로는 적용에 한계가 있다. 이에 웹사용성(Web Usage Mining)을 통한 고객 프로파일링 기법, 데이터의 희소성 문제를 해결하기 위한 연관규칙 알고리즘과 규칙 기반 알고리즘을 결합하여 고속의 상품 추천시스템 방법을 제안한다. 본 논문에서는 연관규칙 방법에서 가장 많이 사용되어지는 Apriori 방법, 규칙기반 방법(Rule Base) 과 실제 여행사의 웹로그를 사용하여 46%라는 높은 추천 성능의 결과를 검증하였으며, 상품의 개수와 고객의 수가 상품추천 처리 속도에 영향을 주지 않으며, 실제 커머셜한 환경 하에서도 1초이내에 상품을 추천해줄 수 있는 결과를 보여준다.

    영어초록

    Outbound market is a rapidly growing global industry, and has evolved into a 11 trillion won trade. A lot of recommender systems, which are based on collaborative and content filtering, target the existing purchase log or rely on studies based on similarity of products. These researches are not highly efficient as data was not obtained in advance, and acquiring the overwhelming amount of data has been relatively slow. The characteristics of an outbound product are that it should be purchased at least twice in a year, and its pricing should be in the higher category. Since the repetitive purchase of a product is rare for the outbound market, the old recommender system which profiles the existing customers is lacking, and has some limitations. Therefore, due to the scarcity of data, we suggest an improved customer-profiling method using web usage mining, algorithm of association rule, and rule-based algorithm, for faster recommender system of outbound product.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 24일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:23 오전