• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

재귀분할을 이용한 새로운 점진적 인스턴스 기반 학습기법

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
6 페이지
기타파일
최초등록일 2025.06.16 최종저작일 2006.04
6P 미리보기
재귀분할을 이용한 새로운 점진적 인스턴스 기반 학습기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 13권 / 2호 / 127 ~ 132페이지
    · 저자명 : 한진철, 김상귀, 윤충화

    초록

    인스턴스 기반 학습의 대표적인 알고리즘인 k-NN(K-Nearest Neighbors)은 단순히 전체 학습패턴을 메모리에 저장한 다음, 분류할 때 학습패턴들과의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 테스트 패턴을 분류한다. K-NN 기법은 만족할 만한 분류성능을 보여주지만, 학습패턴의 개수가 늘어나면 메모리와 분류 시간이 증가하는 문제점을 가지고 있다. 그러므로, 메모리의 효율적 사용과 분류 시간을 단축시키기 위한 다양한 연구들이 발표되었으며, 그 대표적인 예로 NGE(Nested Generalized Exemplar) 이론을 들 수 있다. 본 논문에서는 학습패턴의 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging)기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA)기법을 제안하였다. RPA기법은 전체 학습패턴의 공간을 재귀적으로 분할하면서 대표패턴을 생성하며, IRPA 기법은 RPA 기법의 특성상 패턴의 특징 개수가 많은 경우, 과도한 분할로 인하여 생성되는 많은 개수의 대표패턴을 줄이기 위하여 점진적으로 대표패턴을 추출하는 알고리즘이다. 본 논문에서 제안한 기법은 기존의 k-NN 기법과 비교하여 현저하게 줄어든 대표패턴을 이용하여 유사한 분류 성능을 보여주며, NGE 이론을 구현한 EACH 시스템과 비교하여 탁월한 분류 성능을 보여준다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:04 오후