• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

신약후보 분자생성을 위한 새로운 트랜스포머 모델 (New Transformer Model to Generate Molecules for Drug Discovery)

9 페이지
기타파일
최초등록일 2025.06.15 최종저작일 2023.11
9P 미리보기
신약후보 분자생성을 위한 새로운 트랜스포머 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 50권 / 11호 / 976 ~ 984페이지
    · 저자명 : 홍유빈, 이경준, 허동녕, 최희열

    초록

    다양한 생성모델 기반의 신약 후보 생성 방법 중, 회귀적 신경망 (RNNs) 기반의 모델이 최고 성능을 보여왔다. RNN의 장기 의존성 문제를 해결하기 위해 Transformer 기반의 모델이 제안되어왔으나, RNN 기반 모델에 비해서 낮은 성능을 보였는데, Transformer 모델의 과적합 문제가 그 원인일 수 있다. 해당문제를 완화하도록, 본 논문에서는, 큰 decoder 모델을 간단한 순방향 신경망으로 변환하는 모델을 제안한다. 실험결과, 제안된 모델이 기존 최고 성능 모델을 주요 지표들에서 앞서며, 다른 지표에서도 유사한 성능을 보이는 것을 확인했다. 또한, 제안하는 모델을 SARs-CoV-2 (COVID-19) 바이러스에 대항할 수 있는 신약 후보 생성에 적용하였고, 그렇게 생성된 신약 후보군들이 현재 시장에서 사용되는 약들인 Paxlovid, Molnupiravir, Remdesivir들 보다 더 효과적인 실험결과를 확인하였다.

    영어초록

    Among various generative models, recurrent neural networks (RNNs) based models have achieved state-of-the-art performance in the drug generation task. To overcome the long-term dependency problem that RNNs suffer from, Transformer-based models were proposed for the task.
    However, the Transformer models showed worse performances than the RNNs models in the drug generation task, and we believe it was because the Transformer models were over-parameterized with the over-fitting problem. To avoid the problem, in this paper, we propose a new Transformer model by replacing the large decoder with simple feed-forward layers. Experiments confirmed that our proposed model outperformed the previous state-of-the-art baseline in major evaluation metrics while preserving other minor metrics with a similar level of performance. Furthermore, when we applied our model to generate candidate molecules against SARs-CoV-2 (COVID-19) virus, the generated molecules were more effective than drugs in commercial market such as Paxlovid, Molnupiravir, and Remdesivir.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 14일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:11 오후