• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

랜덤포레스트 머신러닝 기법을 활용한 전통적 비행이론기반 청소년 온․오프라인 비행 예측요인 연구 (A Study on the Classic Theory-Driven Predictors of Adolescent Online and Offline Delinquency using the Random Forest Machine Learning Algorithm)

30 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2022.11
30P 미리보기
랜덤포레스트 머신러닝 기법을 활용한 전통적 비행이론기반 청소년 온․오프라인 비행 예측요인 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국문화및사회문제심리학회
    · 수록지 정보 : 한국심리학회지: 문화 및 사회문제 / 28권 / 4호 / 661 ~ 690페이지
    · 저자명 : 이택호, 김선영, 한윤선

    초록

    본 연구에서는 청소년 비행이 지속적인 사회문제로 대두됨에 따라 청소년의 온․오프라인 비행을 예측하는 주요 요인들을 탐색하고 전통적 비행이론(사회학습이론, 일반긴장이론, 사회통제이론, 일상활동이론, 낙인이론)의 적용 가능성을 살펴보았다. 분석에 활용된 데이터는 한국아동․청소년패널조사 2010(KCYPS 2010)의 초1, 초4, 중1 패널 6차년도 데이터이다(N=4,137). 예측 모형을 구축함에 있어 전통적 통계기반의 회귀모형 대신 랜덤포레스트 머신러닝 기법을 활용함으로써 예측 성능 향상과 더불어 보다 많은 예측요인의 고려 가능성에 초점을 두었다. 랜덤포레스트 분석 결과, 청소년의 온․오프라인 비행을 설명하는 데에 전통적인 비행이론은 여전히 유효하였으며, 온라인 비행은 주로 개인적 요인(일상활동이론, 낙인이론)과, 오프라인 비행은 사회적 요인(사회학습이론, 사회통제이론)과 관련이 있는 것으로 나타났다. 또한 일반긴장이론은 온라인 비행과 오프라인 비행 모두를 예측하는 중요한 이론적 기반임을 확인할 수 있었다. 본 연구는 머신러닝 기법을 통해 청소년 비행에 영향을 주는 주요 요인을 도출하고, 기존 비행이론의 활용 가능성도 함께 고려했다는 점에서 의의가 있으며, 청소년 온․오프라인비행에 대한 예방 및 개입 방향성을 재고하는 기반을 제공할 것이라 기대된다.

    영어초록

    Adolescent delinquency is a substantial social problem that occurs in both offline and online domains.
    The current study utilized random forest algorithms to identify predictors of adolescents’ online and offline delinquency. Further, we explored the applicability of classic delinquency theories (social learning, strain, social control, routine activities, and labeling theory). We used the first-grade and fourth-grade elementary school panels as well as the first-grade middle school panel (N=4,137) among the sixth wave of the nationally-representative Korean Children and Youth Panel Survey 2010 for analysis. Random forest algorithms were used instead of the conventional regression analysis to improve the predictive performance of the model and possibly consider many predictors in the model. Random forest algorithm results showed that classic delinquency theories designed to explain offline delinquency were also applicable to online delinquency. Specifically, salient predictors of online delinquency were closely related to individual factors(routine activities and labeling theory). Social factors(social control and social learning theory) were particularly important for understanding offline delinquency. General strain theory was the commonly important theoretical framework that predicted both offline and online delinquency. Findings may provide evidence for more tailored prevention and intervention strategies against offline and online adolescent delinquency.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:49 오전