• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

효율적 자원 탐색을 위한 소셜 웹 태그들을이용한 동적 가상 온톨로지 생성 연구 (Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search)

15 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2013.03
15P 미리보기
효율적 자원 탐색을 위한 소셜 웹 태그들을이용한 동적 가상 온톨로지 생성 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 19권 / 1호 / 19 ~ 33페이지
    · 저자명 : 이현정, 손미애

    초록

    본 논문에서는 네트워크 기반 대용량의 자원들을 효율적으로 검색하기 위해 사용자의 요구사항에 기반해 검색에 요구되는 태그들 간의 의미론에 기반한 동적 가상 온톨로지 (Dynamic Virtual Ontology using Tags: DyVOT)를 추출하고 이를 이용한 동적 검색 방법론을 제안한다. 태그는 소셜네트워크 서비스를 지원하거나 이로부터 생성되는 정형 및 비정형의 다양한 자원들에 대한 자원을 대표하는 특성을 포함하는 메타적 정보들로 구성된다. 따라서 본 연구에서는 이러한 태그들을 이용해 자원의 관계를 정의하고 이를 검색 등에 활용하고자 한다. 관계 등의 정의를 위해 태그들의 속성을 정의하는 것이 요구되며, 이를 위해 태그에 연결된 자원들을 이용하였다. 즉, 태그가 어떠한 자원들을 대표하고 있는 지를 추출하여 태그의 성격을 정의하고자 하였고, 태그를 포함하는 자원들이 무엇인지에 의해 태그간의 의미론적인 관계의 설정도 가능하다고 보았다. 즉, 본 연구에서 제안하는 검색 등의 활용을 목적으로 하는 DyVOT는 태그에 연결된 자원에 근거해 태그들 간의 의미론적 관계를 추출하고 이에 기반하여 가상 동적 온톨로지를 추출한다. 생성된 DyVOT는 대용량의 데이터 처리를 위해 대표적인 예로 검색에 활용될 수 있으며, 태그들 간의 의미적 관계에 기반해 검색 자원의 뷰를 효과적으로 좁혀나가 효율적으로 자원을 탐색하는 것을 가능하도록 한다. 이를 위해 태그들 간의 상하 계층관계가 이미 정의된 시맨틱 태그 클라우드인 정적 온톨로지를 이용한다. 이에 더해, 태그들 간의 연관관계를 정의하고 이에 동적으로 온톨로지를 정의하여 자원 검색을 위한 동적 가상 온톨로지 DyVOT를 생성한다. DyVOT 생성은 먼저 정적온톨로지로부터 사용자 요구사항을 포함하는 태그를 포함한 부분-온톨로지들을 추출하고, 이들이 공유하는 자원의 정도에 따라 부분-온톨로지들 간의 새로운 연관관계 여부를 결정하여 검색에 요구되는 최소한의 동적 가상 온톨로지를 구축한다. 즉, 태그들이 공유하는 자원이 무엇인가에 의해 연관관계가 높은 태그들 간에는 이들의 관계를 설명하는 새로운 클래스를 가진 생성된 동적 가상 온톨로지를 이용하여 검색에 활용한다. 온톨로지의 인스턴스는 자원으로 정의되고, 즉 이는 사용자가 검색하고자 하는 해로서 정의된다. 태그들 간의 관계에 의해 생성된 DyVOT를 이용해 기존 정적 온톨로지나 키워드 기반 탐색에 비해 검색해야 할 자원의 량을 줄여 검색의 정확성과 신속성을 향상 시킨다.

    영어초록

    In this research, a proposed Dynamic Virtual Ontology using Tags (DyVOT) supports dynamic search of resources depending on user’s requirements using tags from social web driven resources.
    It is general that the tags are defined by annotations of a series of described words by social users who usually tags social information resources such as web-page, images, u-tube, videos, etc. Therefore, tags are characterized and mirrored by information resources. Therefore, it is possible for tags as meta-data to match into some resources. Consequently, we can extract semantic relationships between tags owing to the dependency of relationships between tags as representatives of resources.
    However, to do this, there is limitation because there are allophonic synonym and homonym among tags that are usually marked by a series of words. Thus, research related to folksonomies using tags have been applied to classification of words by semantic-based allophonic synonym. In addition, some research are focusing on clustering and/or classification of resources by semantic-based relationships among tags. In spite of, there also is limitation of these research because these are focusing on semantic-based hyper/hypo relationships or clustering among tags without consideration of conceptual associative relationships between classified or clustered groups. It makes difficulty to effective searching resources depending on user requirements.
    In this research, the proposed DyVOT uses tags and constructs ontologyfor effective search. We assumed that tags are extracted from user requirements, which are used to construct multi sub-ontology as combinations of tags that are composed of a part of the tags or all. In addition, the proposed DyVOT constructs ontology which is based on hierarchical and associative relationships among tags for effective search of a solution. The ontology is composed of static- and dynamic-ontology. The static-ontology defines semantic-based hierarchical hyper/hypo relationships among tags as in (http://semanticcloud.sandra-siegel.de/) with a tree structure. From the static-ontology, the DyVOT extracts multi sub-ontology using multi sub-tag which are constructed by parts of tags. Finally, sub-ontology are constructed by hierarchy paths which contain the sub-tag.
    To create dynamic-ontology by the proposed DyVOT, it is necessary to define associative relationships among multi sub-ontology that are extracted from hierarchical relationships of static- ontology. The associative relationship is defined by shared resources between tags which are linked by multi sub-ontology. The association is measured by the degree of shared resources that are allocated into the tags of sub-ontology. If the value of association is larger than threshold value, then associative relationship among tags is newly created. The associative relationships are used to merge and construct new hierarchy the multi sub-ontology. To construct dynamic-ontology, it is essential to defined new class which is linked by two more sub-ontology, which is generated by merged tags which are highly associative by proving using shared resources. Thereby, the class is applied to generate new hierarchy with extracted multi sub-ontology to create a dynamic-ontology. The new class is settle down on the ontology. So, the newly created class needs to be belong to the dynamic-ontology. So, the class used to new hyper/hypo hierarchy relationship between the class and tags which are linked to multi sub-ontology. At last, DyVOT is developed by newly defined associative relationships which are extracted from hierarchical relationships among tags. Resources are matched into the DyVOT which narrows down search boundary and shrinks the search paths. Finally, we can create the DyVOT using the newly defined associative relationships.
    While static data catalog (Dean and Ghemawat, 2004; 2008) statically searches resources depending on user requirements, the proposed DyVOT dynamically searches resources using multi sub- ontology by parallel processing. In this light, the DyVOT supports improvement of correctness and agility of search and decreasing of search effort by reduction of search path..

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:17 오전