• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

용어 가중치부여 기법을 이용한 로치오 분류기의 성능 향상에 관한 연구 (A Study on the Performance Improvement of Rocchio Classifier with Term Weighting Methods)

23 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2008.03
23P 미리보기
용어 가중치부여 기법을 이용한 로치오 분류기의 성능 향상에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 25권 / 1호 / 211 ~ 233페이지
    · 저자명 : 김판준

    초록

    로치오 알고리즘에 기반한 자동분류의 성능 향상을 위하여 두 개의 실험집단(LISA, Reuters-21578)을 대상으로 여러 가중치부여 기법들을 검토하였다. 먼저, 가중치 산출에 사용되는 요소를 크게 문헌요소(document factor), 문헌집합 요소(document set factor), 범주 요소(category factor)의 세 가지로 구분하여 각 요소별 단일 가중치부여 기법의 분류 성능을 살펴보았고, 다음으로 이들 가중치 요소들 간의 조합 가중치부여 기법에 따른 성능을 알아보았다. 그 결과, 각 요소별로는 범주 요소가 가장 좋은 성능을 보였고, 그 다음이 문헌집합 요소, 그리고 문헌 요소가 가장 낮은 성능을 나타냈다. 가중치 요소 간의 조합에서는 일반적으로 사용되는 문헌 요소와 문헌집합 요소의 조합 가중치(tfidf or ltfidf)와 함께 문헌 요소를 포함하는 조합(tf*cat or ltf*cat) 보다는, 오히려 문헌 요소를 배제하고 문헌 집합 요소를 범주 요소와 결합한 조합 가중치 기법(idf*cat)이 가장 좋은 성능을 보였다. 그러나 실험집단 측면에서 단일 가중치와 조합 가중치를 서로 비교한 결과에 따르면, LISA에서 범주 요소만을 사용한 단일 가중치(cat only)가 가장 좋은 성능을 보인 반면, Reuters-21578에서는 문헌집합 요소와 범주 요소간의 조합 가중치(idf*cat)의 성능이 가장 우수한 것으로 나타났다. 따라서 가중치부여 기법에 대한 실제 적용에서는, 분류 대상이 되는 문헌집단 내 범주들의 특성을 신중하게 고려할 필요가 있다.

    영어초록

    This study examines various weighting methods for improving the performance of automatic classification based on Rocchio algorithm on two collections(LISA, Reuters-21578). First, three factors for weighting are identified as document factor, document factor, category factor for each weighting schemes, the performance of each was investigated. Second, the performance of combined weighting methods between the single schemes were examined. As a result, for the single schemes based on each factor, category-factor-based schemes showed the best performance, document set-factor-based schemes the second, and document-factor-based schemes the worst. For the combined weighting schemes, the schemes(idf*cat) which combine document set factor with category factor show better performance than the combined schemes(tf*cat or ltf*cat) which combine document factor with category factor as well as the common schemes(tfidf or ltfidf) that combining document factor with document set factor. However, according to the results of comparing the single weighting schemes with combined weighting schemes in the view of the collections, while category-factor-based schemes(cat only) perform best on LISA, the combined schemes(idf*cat) which combine document set factor with category factor showed best performance on the Reuters-21578. Therefore for the practical application of the weighting methods, it needs careful consideration of the categories in a collection for automatic classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보관리학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 24일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:24 오전