• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Spark 프레임워크를 적용한 대용량 SHIF 온톨로지 추론 기법 (An Approach of Scalable SHIF Ontology Reasoning using Spark Framework)

12 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2015.10
12P 미리보기
Spark 프레임워크를 적용한 대용량 SHIF 온톨로지 추론 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 42권 / 10호 / 1195 ~ 1206페이지
    · 저자명 : 김제민, 박영택

    초록

    지식 관리 시스템을 운영하기 위해서는 대량의 지식 정보를 자동으로 추론 및 관리하는 기술이 필요하다. 현재, 이러한 시스템의 대다수는 컴퓨터간의 지식 정보를 자동으로 교환하고 스스로 새로운지식을 추론하기 위해 온톨로지를 적용하고 있다. 따라서 대용량의 온톨로지를 대상으로 새로운 정보를 추론하는 효율적인 기술이 요구되고 있다. 본 논문은 분산 클러스터의 메모리상에서 MapReduce와 유사한작업을 수행하는 Spark 프레임워크를 적용하여, SHIF 수준으로 작성된 대용량의 온톨로지를 규칙 기반으로 추론하는 기술에 대해서 제안한다. 이에 본 논문은 다음 3 가지에 초점을 맞추어 설명을 한다. 클러스터내의 분산된 메모리상에서 대용량 추론을 실시하기 위해서, 먼저 각 추론 규칙에 따라 대용량의 온톨로지 트리플을 효과적으로 분류하여 적재하기 위한 자료구조, 두 번째 규칙간의 종속 관계와 상호 연관성에따른 규칙 실행 순서와 반복 조건 정의, 마지막으로 규칙 실행에 필요한 명령을 정의하고 이러한 명령어를 실행하여 추론을 수행하는 알고리즘에 대해 설명한다. 제안하는 기법의 효율성을 검증하기 위해, 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM을 대상으로 실험을 수행하였다. 대표적인 분산클러스터 기반 대용량 온톨로지 추론 엔진인 WebPie와 비교 실험한 결과, LUBM에 대해서 WebPie의 추론 처리량이 553 트리플/초 인데 비해 284배 개선된 157k 트리플/초의 성능 향상이 있었다.

    영어초록

    For the management of a knowledge system, systems that automatically infer and manage scalable knowledge are required. Most of these systems use ontologies in order to exchange knowledge between machines and infer new knowledge. Therefore, approaches are needed that infer new knowledge for scalable ontology. In this paper, we propose an approach to perform rule based reasoning for scalable SHIF ontologies in a spark framework which works similarly to MapReduce in distributed memories on a cluster. For performing efficient reasoning in distributed memories, we focus on three areas. First, we define a data structure for splitting scalable ontology triples into small sets according to each reasoning rule and loading these triple sets in distributed memories. Second, a rule execution order and iteration conditions based on dependencies and correlations among the SHIFrules are defined. Finally, we explain the operations that are adapted to execute the rules, and these operations are based on reasoning algorithms. In order to evaluate the suggested methods in this paper, we perform an experiment with WebPie, which is a representative ontology reasoner based on a cluster using the LUBM set, which is formal data used to evaluate ontology inference and search speed.
    Consequently, the proposed approach shows that the throughput is improved by 28,400% (157k/sec) from WebPie(553/sec) with LUBM.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:07 오후