• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

분산 클러스터 메모리 기반 대용량 OWL Horst Lite 온톨로지 추론 기법 (A Scalable OWL Horst Lite Ontology Reasoning Approach based on Distributed Cluster Memories)

13 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2015.03
13P 미리보기
분산 클러스터 메모리 기반 대용량 OWL Horst Lite 온톨로지 추론 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 42권 / 3호 / 307 ~ 319페이지
    · 저자명 : 김제민, 박영택

    초록

    현재 대용량 온톨로지를 추론하기 위해 하둡 기반의 분산 클러스터 환경을 구축한 후, 맵-리듀스 알고리즘을 기반으로 추론을 수행하는 방식이 활발히 연구되고 있다. 그러나 본 논문에서는 분산 클러스터의 메모리 환경에서 대용량 OWL Horst Lite 온톨로지 추론을 위한 기법을 제안한다. 대용량 온톨로지 추론에 사용되는 규칙 기반 추론 방식은 데이터가 더 이상 추론 되지 않을 때까지 트리플 형식으로표현된 온톨로지에 추론 규칙을 반복적으로 수행한다. 따라서 컴퓨터 디스크에 적재된 대용량의 온톨로지를 대상으로 추론을 수행하면 추론 시스템의 성능이 상당히 저하된다. 이러한 단점을 극복하기 위해서 본논문에서는 메모리 기반의 분산 클러스터 프레임워크인 Spark를 기반으로 온톨로지를 메모리에 적재한후, 추론을 수행하는 기법을 제안한다. Spark에 적합한 OWL Horst Lite 온톨로지 추론 시스템을 구현하기 위해서 대용량 온톨로지를 적절한 크기의 블록으로 분할한 후, 각각의 블록을 분산 클러스터를 구성하는 각 노드의 메모리에 분산 적재하여 작업을 수행하는 방법론을 제안하였다. 제안하는 기법의 효율성을검증하기 위해, 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM을 대상으로 실험하였다. 대표적인 맵-리듀스 기반 온톨로지 추론 엔진인 WebPIE와 비교 실험한 결과, LUBM8000(11억개 트리플, 155GB)에 대해서 WebPIE의 추론 처리량이 19k/초보다 3.2배 개선된 62k/초의 성능 향상이 있었다.

    영어초록

    Current ontology studies use the Hadoop distributed storage framework to perform map-reduce algorithm-based reasoning for scalable ontologies. In this paper, however, we propose a novel approach for scalable Web Ontology Language (OWL) Horst Lite ontology reasoning, based on distributed cluster memories. Rule-based reasoning, which is frequently used for scalable ontologies, iteratively executes triple-format ontology rules, until the inferred data no longer exists. Therefore, when the scalable ontology reasoning is performed on computer hard drives, the ontology reasoner suffers from performance limitations. In order to overcome this drawback, we propose an approach that loads the ontologies into distributed cluster memories, using Spark (a memory-based distributed computing framework), which executes the ontology reasoning. In order to implement an appropriate OWL Horst Lite ontology reasoning system on Spark, our method divides the scalable ontologies intoblocks, loads each block into the cluster nodes, and subsequently handles the data in the distributed memories. We used the Lehigh University Benchmark, which is used to evaluate ontology inference and search speed, to experimentally evaluate the methods suggested in this paper, which we applied to LUBM8000 (1.1 billion triples, 155 gigabytes). When compared with WebPIE, a representative mapreduce algorithm-based scalable ontology reasoner, the proposed approach showed a throughput improvement of 320% (62k/s) over WebPIE (19k/s).

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 11일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:43 오전