• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

대체연료를 사용하는 시멘트 예열실 온도 예측 제어 (Temperature Prediction and Control of Cement Preheater Using Alternative Fuels)

12 페이지
기타파일
최초등록일 2025.06.12 최종저작일 2024.08
12P 미리보기
대체연료를 사용하는 시멘트 예열실 온도 예측 제어
  • 미리보기

    서지정보

    · 발행기관 : 한국자원리싸이클링학회
    · 수록지 정보 : 자원리싸이클링 / 33권 / 4호 / 3 ~ 14페이지
    · 저자명 : 발진냠 바산어치르, 이예림, 유보선, 최재식

    초록

    시멘트 제조공정 중 예열 및 소성 공정은 시멘트 반제품인 클링커를 생산하는 주요 공정으로, 고온의 열에너지를 발생시키기 위해 많은 양의 화석연료를 사용한다. 하지만, 최근 환경오염 문제의 심각성으로 인해 시멘트 산업에서 화석연료로부터 기인하는 탄소 배출량을저감하고자 하는 시도가 지속되고 있다. 대표적인 해결 방안으로 화석연료 대신 폐기물 유래 연료(RDF, Refuse-Derived Fuel)와 같은 대체연료의 사용량을 증대시키기 위한 선행 연구 사례들이 많다. 대체연료는 탄소뿐만 아니라 질소산화물 발생량 또한 저감시킬 수 있고 폐기물을 매립하는 대신 예열실 및 소성로에서 연소시켜 처리할 수 있다는 장점이 있다. 하지만 다양한 성분으로 구성된 대체연료의 특성상열량을 추정할 수 없다는 문제점이 있으며, 이로 인해 대체연료 사용량을 증대시키고 안정적으로 예열실을 제어하는 데 어려움이 있다.
    따라서 본 연구에서는 심층 신경망을 기반으로 예열실 온도를 예측하는 모델을 개발하여 미래의 예열실 온도에 대한 비교적 정확한 예측값을 제공하고, 설명가능 인공지능을 활용하여 최적의 연료 투입량을 제시하는 솔루션을 제안하였다. 제안된 솔루션은 실제 예열 공정 현장에 적용되어 화석연료 사용량 5% 감소, 대체연료 대체율 5%p 증가, 예열실 온도 변동 35% 감소하는 성과를 달성할 수 있었다.

    영어초록

    The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence.
    Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 19일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:14 오후