• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

효과적인 역 톤 매핑을 위한 필터링 기법 (Image Filtering Method for an Effective Inverse Tone-mapping)

10 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2019.03
10P 미리보기
효과적인 역 톤 매핑을 위한 필터링 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 24권 / 2호 / 217 ~ 226페이지
    · 저자명 : 강라훈, 박범준, 정제창

    초록

    본 논문에서는 가이디드 영상 필터 (guided image filter: GIF)를 이용하여 컨볼루션 신경망 (convolutional neural network; CNN)을 이용한 역 톤 매핑 (inverse tone-mapping) 기법의 결과를 향상시킬 수 있는 필터링 기법을 제안한다. 저동적범위 (low dynamic range; LDR) 영상을 고동적범위 (high dynamic range; HDR) 디스플레이에서 표현할 수 있도록 변환하는 역 톤 매핑 기법은 지속적으로 제안되어왔다. 최근 들어 컨볼루션 신경망을 이용하여 단일 LDR 영상을 HDR 영상으로 변환하는 알고리듬이 많이 연구되었다. 그 중엔 제한된 동적범위 (dynamic range)로 인해 화소가 포화되어 기존 화소 정보가 손실되는데 이를 학습된 컨볼루션 신경망을 이용해서 복원하는 알고리듬이 존재한다. 해당 알고리듬은 비포화 영역의 잡음까지는 억제하지 못하며 포화 영역의 디테일까지는 복원하지 못한다. 제안한 알고리듬은 입력 영상에 가중된 가이디드 영상 필터 (weighted guided image filter; WGIF)를 사용해서 비포화 영역의 잡음을 억제하고 포화 영역의 디테일을 복원시킨 다음 컨볼루션 신경망에 인가하여 최종 결과 영상의 품질을 개선하였다. 제안하는 알고리듬은 HDR 정량적 화질평가 지표를 측정하였을 때 기존의 알고리듬에 비해 높은 화질평가 지수를 나타내었다.

    영어초록

    In this paper, we propose a filtering method that can improve the results of inverse tone-mapping using guided image filter. Inverse tone-mapping techniques have been proposed that convert LDR images to HDR. Recently, many algorithms have been studied to convert single LDR images into HDR images using CNN. Among them, there exists an algorithm for restoring pixel information using CNN which learned to restore saturated region. The algorithm does not suppress the noise in the non-saturation region and cannot restore the detail in the saturated region. The proposed algorithm suppresses the noise in the non-saturated region and restores the detail of the saturated region using a WGIF in the input image, and then applies it to the CNN to improve the quality of the final image. The proposed algorithm shows a higher quantitative image quality index than the existing algorithms when the HDR quantitative image quality index was measured.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 09일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:34 오후