• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

건강추천시스템(HRS) 연구 동향:인용네트워크 분석과 GraphSAGE를 활용하여 (Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE)

28 페이지
기타파일
최초등록일 2025.06.09 최종저작일 2023.06
28P 미리보기
건강추천시스템(HRS) 연구 동향:인용네트워크 분석과 GraphSAGE를 활용하여
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 29권 / 2호 / 57 ~ 84페이지
    · 저자명 : 장하렴, 유지수, 양성병

    초록

    현대사회는 정보통신기술 및 빅데이터 기술의 발전으로 누구나 인터넷을 통해 손쉽게 방대한 데이터를 얻고 활용할 수있는 시대로, 양질의 데이터를 수집하는 능력을 넘어 수많은 정보 속에서 올바른 데이터만을 선별하는 능력이 더욱 중요 해지고 있다. 이러한 기조는 학계에서도 이어지고 있는데, 축적되는 연구물 속에서 양질의 연구를 선별하여 올바른 지식 구조를 형성하기 위해, 다양한 연구 분야에서 체계적 고찰(systematic review) 및 비체계적 고찰(non-systematic review)과같은 문헌연구(literature review)가 수행되고 있다. 한편, 코로나19 팬데믹 이후 의료산업에서도 그동안 합의에 이르지 못했던 원격의료가 제한적으로나마 허용되고, 인공지능 및 빅데이터 기술이 응용된 건강추천시스템(health recommender systems: HRS)과 같은 새로운 의료서비스가 각광을 받고 있다. 하지만, 실무적으로 HRS가 미래 의료산업 발전을 이끌 중요한 기술로 평가받고 있음에도 불구하고, 학술적인 문헌연구는 다른 분야에 비해 매우 부족한 실정이다. 더불어 HRS는학제적 성격이 강한 융합 분야임에도 불구하고, 기존의 문헌연구는 비체계적 고찰과 체계적 고찰 방법만을 주로 활용하여 이뤄졌기 때문에, 다른 연구 분야와의 상호작용이나 동적인 관계를 유추하기에는 한계가 존재한다. 이에, 본 연구에서는 인용네트워크 분석(citation network analysis: CNA)을 활용하여 HRS 및 주변 연구 분야의 전체적인 네트워크 구조를 파악하였다. 또한, 이 과정에서 최신 논문이 인용 관계가 잘 나타나지 않는 문제를 보완하기 위해 GraphSAGE 알고리즘을 적용함으로써, HRS 연구에 있어 ‘recommender system’, ‘wireless & IoT’, ‘computer vision’, ‘text mining’ 등과 같은 연구 분야들의 중요도가 높아지고 있음을 파악하였으며, 이와 동시에 개인화(personalization) 및 개인정보보호(privacy) 등과 같은 새로운 키워드가 주요 이슈로 등장하고 있음을 확인하였다. 본 연구를 통해 HRS 연구 커뮤니티의 구조를 파악하고, 관련된 연구 동향을 살펴보며, 미래 HRS 연구 방향을 설계함에 있어 실질적인 통찰을 제공할 수 있을 것으로 기대한다.

    영어초록

    With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified ‘recommender system’, ‘wireless & IoT’, ‘computer vision’, and ‘text mining’ as increasingly important research fields related to HRS research, and confirmed that ‘personalization’ and ‘privacy’ are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 24일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:16 오전