• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

적외선 영상을 위한 적응적 언샤프 마스킹을 이용한 초고해상도 알고리즘 (Super-resolution Algorithm Using Adaptive Unsharp Masking for Infra-red Images)

12 페이지
기타파일
최초등록일 2025.06.08 최종저작일 2016.03
12P 미리보기
적외선 영상을 위한 적응적 언샤프 마스킹을 이용한 초고해상도 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 21권 / 2호 / 180 ~ 191페이지
    · 저자명 : 김용준, 송병철

    초록

    일반 가시광선 영상의 확대를 위한 알고리즘을 선명도가 떨어지는 적외선 영상에 적용시켰을 때 개선효과가 미흡한 문제점을 해결하기 위해 본 논문은 적외선 영상을 위한 영상 확대 알고리즘을 제안한다. 제안 알고리즘은 적외선 영상이 가시광선 영상에 비해 디테일이 적다는 특성과 에지 영역에 대해 사람이 시각적으로 민감하다는 특성을 고려하여 ADRC(Adaptive Dynamic Range Coding)와 같은 단순한 분류기법을 적용시켰으며, 에지 영역에 대해서만 알고리즘을 적용시켜 연산량을 절약한다. 또한 확대 영상의 선명도 개선을 위해 합성과정에서 전처리나 후처리를 추가시키는 방법 대신 학습과정에서 전처리를 추가하여 합성과정에서 연산량 증가 없이 확대 영상의 선명도를 개선하였다. 제안 알고리즘은 크게 학습과정과 합성과정으로 나뉜다. 이와 같은 방법으로 영상 확대 알고리즘을 수행하였을 때 최신의 영상확대 기법인 A+ (Anchored neighborhood regression)기법 대비 JNB(Just Noticeable Blur)수치가 평균 0.0201만큼 높은 결과를 확인할 수 있었다.

    영어초록

    When up-scaling algorithms for visible light images are applied to infrared (IR) images, they rarely work because IR images are usually blurred. In order to solve such a problem, this paper proposes an up-scaling algorithm for IR images. We employ adaptive dynamic range encoding (ADRC) as a simple classifier based on the observation that IR images have weak details. Also, since human visual systems are more sensitive to edges, our algorithm focuses on edges. Then, we add pre-processing in learning phase. As a result, we can improve visibility of IR images without increasing computational cost. Comparing with Anchored neighborhood regression (A+), the proposed algorithm provides better results. In terms of just noticeable blur, the proposed algorithm shows higher values by 0.0201 than the A+, respectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:22 오전