• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Fourier 변환 변이계수를 이용한 미디언 필터링 영상의 포렌식 판정 (Forensic Decision of Median Filtering Image Using a Coefficient of Variation of Fourier Transform)

7 페이지
기타파일
최초등록일 2025.06.08 최종저작일 2015.08
7P 미리보기
Fourier 변환 변이계수를 이용한 미디언 필터링 영상의 포렌식 판정
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 52권 / 8호 / 67 ~ 73페이지
    · 저자명 : 이강현

    초록

    디지털 영상의 배포에서, 위·변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 Fourier 변환 변이계수를 이용한 미디언 필터링 (Median Filtering: MF) 영상의 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 영상의 각 수평, 수직라인의 Fourier 변환 (Fourier Transform: FT)을 하고, 이웃 라인과의 변이계수를 기반으로 하여 MF 검출 (Median Filtering Detection: MFD)을 위한 10 Dim. 특징벡터를 정의한다. 이는 MF 검출기의SVM (Support Vector Machine) 학습에 사용된다.
    제안된 미디언 필터링 검출 스킴은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual)과 Rhee의 MF 검출 스킴과 비교하여 원영상, JPEG (QF=90), Down 스케일링 (0.9) 그리고 Up 스케일링 (1.1) 영상에서는 성능이 우수하며, Gaussian 필터링(3×3) 영상에서는 성능이 일부 높았다. 제안된 알고리즘은 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)에 의한 AUC (Area Under ROC (Receiver Operating Characteristic) Curve)가 모두 1에 수렴하여 ‘Excellent (A)’ 등급임을 확인하였다.

    영어초록

    In a distribution of digital image, there is a serious problem that is the image alteration by a forger. For the problem solution, this paper proposes the forensic decision algorithm of a median filtering (MF) image using the feature vector based on a coefficient of variation (c.v.) of Fourier transform. In the proposed algorithm, we compute Fourier transform (FT) coefficients of row and column line respectively of an image first, then c.v. between neighboring lines is computed.
    Subsquently, 10 Dim. feature vector is defined for the MF detection.
    On the experiment of MF detection, the proposed scheme is compared to MFR (Median Filter Residual) and Rhee's MF detection schemes that have the same 10 Dim. feature vector both. As a result, the performance is excellent at Unaltered, JPEG (QF=90), Down scaling (0.9) and Up scaling (1.1) images, and it showed good performance at Gaussian filtering (3×3) image. However, in the performance evaluation of all measured items of the proposed scheme, AUC (Area Under ROC (Receiver Operating Characteristic) Curve) by the sensitivity and 1-specificity approached to 1 thus, it is confirmed that the grade of the performance evaluation is rated as 'Excellent (A)'.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 03일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:49 오전