• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

양방향 필터 기반 Mean-Shift 기법을 이용한 강인한 얼굴추적 (Bilateral Filtering-based Mean-Shift for Robust Face Tracking)

6 페이지
기타파일
최초등록일 2025.06.06 최종저작일 2013.09
6P 미리보기
양방향 필터 기반 Mean-Shift 기법을 이용한 강인한 얼굴추적
  • 미리보기

    서지정보

    · 발행기관 : 한국전자통신학회
    · 수록지 정보 : 한국전자통신학회 논문지 / 8권 / 9호 / 1319 ~ 1324페이지
    · 저자명 : 최완용, 이윤형, 정문호

    초록

    Mean-Shift 알고리즘은 목표모델과 후보영상 사이의 컬러분포의 유사도를 이용하는 국부적 탐색기법으로서, 그 기법의 단순성 및 안정성 면에서 뛰어나 얼굴추적에 많이 이용되고 있다. 그러나 컬러분포를 이용한얼굴추적은 목표모델과 유사한 컬러분포를 갖는 객체나 배경의 영향에 취약하다. 또한 얼굴 추적에서 결정되는 얼굴영역은 얼굴인식 혹은 얼굴방향 등을 계산할 때 중요한 단서가 되는데, 완전히 다른 컬러분포를 갖는객체의 가려짐으로 얼굴영역의 크기나 위치가 변동될 위험이 있다. 대체로 거리정보는 얼굴과 배경의 구분에효율적이고 컬러정보는 객체 구분에 유리하다는 가정으로부터, 본 논문에서는 이러한 문제를 해결하기 위해거리 정보와 컬러 정보를 함께 이용하는 양방향 필터를 고안하고, 이것을 Mean-Shift 알고리즘에 활용하였다.
    일련의 실험을 통해 성공적인 실험결과를 얻었다.

    영어초록

    The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the target and candidate image.
    However, it is sensitive to the noises due to objects or background having similar color distributions. In addition, occlusion by another object often causes a face region to change in size and position although a face region is a critical clue to perform face recognition or compute face orientation. We assume that depth and color are effective to separate a face from a background and a face from objects, respectively. From the assumption we devised a bilateral filter using color and depth and incorporate it into the mean-shift algorithm. We demonstrated the proposed method by some experiments.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 09일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:36 오후