• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향 (Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction)

9 페이지
기타파일
최초등록일 2025.06.06 최종저작일 2021.01
9P 미리보기
단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 26권 / 1호 / 70 ~ 78페이지
    · 저자명 : 김승룡

    초록

    2차원 단일 영상에서 3차원 깊이 정보를 복원하는 기술은 다양한 한계 및 산업계에서 활용도가 매우 높은 기술임이 분명하다. 하지만 2차원 영상은 임의의 3차원 정보의 투사의 결과라는 점에서 내재적 깊이 모호성(Depth ambiguity)을 가지고 있고 이를 해결하는 문제는 매우 도전적이다. 이러한 한계점은 최근 인공지능 기술의 발달에 힘입어 2차원 영상과 3차원 깊이 정보간의 대응 관계를 학습하는 알고리즘의 발달로 극복되어 지고 있다. 이러한 3차원 깊이 정보 획득을 위한 인공지능 기술을 학습하기 위해서는 대응 관계를 나타내는 대규모의 학습데이터의 필요성이 절대적인데, 이러한 데이터는 취득 및 가공 과정에서 상당한 노동력을 필요로 하기에 제한적으로 구축이 가능하다. 따라서 최근의 기술 발전 동향은 대규모의 2차원 영상과 메타 데이터를 활용하여 3차원 깊이 정보를 예측하려는 약교사(Weakly-supervised) 인공지능 기술의 발전이 주를 이루고 있다. 본 고에서는 이러한 기술 발전 동향을 장면(Scene) 3차원 복원 기술과 객체(Object) 3차원 복원 기술로 나누어 요약하고 현재의 기술들의 한계점과 향후 나아갈 방향에 대해서 토의한다.

    영어초록

    Estimating 3D information from a single image is one of the essential problems in numerous applications. Since a 2D image inherently might originate from an infinite number of different 3D scenes, thus 3D reconstruction from a single image is notoriously challenging. This challenge has been overcame by the advent of recent deep convolutional neural networks (CNNs), by modeling the mapping function between 2D image and 3D information. However, to train such deep CNNs, a massive training data is demanded, but such data is difficult to achieve or even impossible to build. Recent trends thus aim to present deep learning techniques that can be trained in a weakly-supervised manner, with a meta-data without relying on the ground-truth depth data. In this article, we introduce recent developments of weakly-supervised deep learning technique, especially categorized as scene 3D reconstruction and object 3D reconstruction, and discuss limitations and further directions.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 06일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:54 오후