• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

지역빈도해석을 이용한 남해안 지역의 극치풍속 추정 (Estimation of Extreme Wind Speed using Regional Frequency Analysis)

7 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2022.06
7P 미리보기
지역빈도해석을 이용한 남해안 지역의 극치풍속 추정
  • 미리보기

    서지정보

    · 발행기관 : 한국풍공학회
    · 수록지 정보 : 한국풍공학회지 / 26권 / 2호 / 61 ~ 67페이지
    · 저자명 : 김경민, 권순덕, 권현한

    초록

    본 연구에서는 우리나라에 태풍이 내습할 때 먼저 피해를 받는 남해안 지역을 대표하는 Quantile을 제안하고 , 각 지점들의 재 현기간에 따른 극치 풍속을 추정하기 위하여 연 최대풍속 자료와 Hosking이 제안한 선형 -모멘트 방법 (L-moments)을 이용한 지역빈도 해석을 수행하였다 . 모든 기상관측 지점에서는 비정상적인 값이 존재하지 않았고 이질성 검정을 통해서 하나의 동질 한 지역을 나타 낼 수 있음을 확인하였다 . 또한 적합도 과정을 통해서 Generalized Normal (GNO) 및 Generalized Extreme Value(GEV) 분포를 남해안 지역을 대표하는 빈도분포로 선택하였다 . 상대 오차 (RB)와 상대 평균제곱근 오차 (RRMSE)를 이용하여 두 분포의 안정성을 평가한 결 과, GNO 분포가 GEV 분포보다 더 안정한 것을 알 수 있었다 . 마지막으로 남해안 지역을 대표하는 Quantile과 각 지점들의 평균 , 중앙 값, 그리고 위치 매개변수를 이용하여 지점들의 극치 풍속을 추정하였다 . 본 연구에서 적용한 지역빈도해석이 자료가 부족하거나 계측 되지 않은 지점들에 대한 극치 풍속을 추정하기 위한 방법으로서 도입이 필요하다고 생각된다 .

    영어초록

    We performed the regional frequency analysis to estimate the extreme wind speed in southern coastal region of Korea using annual maximum wind speed (AMWS) and linear-moments method proposed by Hosking. Data at all station is found to be accordance. It is confirmed that all data could represent one homogeneous region through the heterogeneity test. Generalized Normal (GNO) and Generalized Extreme Value (GEV) distributions were selected as probability distributions representing the southern coastal region from the goodness-of-fit tests. The stability of the two distributions was evaluated using the relative error (RB) and the root mean square error (RRMSE). It is found that the GNO distribution is more stable than the GEV distribution. Finally, the extreme wind speed of the stations is estimated use the quantile representing the southern coast region, the average, median value, and location parameters of each station. The regional frequency analysis is effective to estimate the extreme wind speed at station where data are insufficient or not measured.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 10일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:31 오후