• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

실시간 차량 밀도에 대응하는 심층강화학습기반 C-V2X 분산혼잡제어 (Deep Reinforcement Learning-Based C-V2X Distributed Congestion Control for Real-Time Vehicle Density Response)

7 페이지
기타파일
최초등록일 2025.06.01 최종저작일 2023.12
7P 미리보기
실시간 차량 밀도에 대응하는 심층강화학습기반 C-V2X 분산혼잡제어
  • 미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 27권 / 4호 / 379 ~ 385페이지
    · 저자명 : 전병철, 양우열, 조한신

    초록

    분산혼잡제어는 높은 밀도의 차량 네트워크에서 채널 혼잡을 완화하고, 통신 성능을 개선하는 기술이다. 기존 분산혼잡제어 기술은 quality of service (QoS) 요구사항을 고려하지 않은 채 채널 혼잡을 줄이는 방향으로 동작한다. 이러한 분산혼잡제어 알고리즘설계는 과도한 DCC 동작으로 인하여 다른 QoS를 저하시킬 수 있다. 이와 같은 문제를 해결하기 위해 심층강화학습 기반 QoS 적응형 DCC 알고리즘을 제안한다. 시뮬레이션은 준 실환경 시뮬레이터를 기반으로 동적인 차량 밀도를 생성하여 평가하였으며, 시뮬레이션 결과 기존 DCC 알고리즘 보다 목표 QoS에 더 근접한 결과를 확인하였다.

    영어초록

    Distributed congestion control (DCC) is a technology that mitigates channel congestion and improves communicationperformance in high-density vehicular networks. Traditional DCC techniques operate to reduce channel congestionwithout considering quality of service (QoS) requirements. Such design of DCC algorithms can lead to excessiveDCC actions, potentially degrading other aspects of QoS. To address this issue, we propose a deep reinforcementlearning-based QoS-adaptive DCC algorithm. The simulation was conducted using a quasi-real environment simulator,generating dynamic vehicular densities for evaluation. The simulation results indicate that our proposed DCCalgorithm achieves results closer to the targeted QoS compared to existing DCC algorithms.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 26일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:15 오후