• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발 (Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS))

16 페이지
기타파일
최초등록일 2025.05.31 최종저작일 2019.09
16P 미리보기
산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 22권 / 3호 / 21 ~ 36페이지
    · 저자명 : 이훈택, 원명수, 윤석희, 장근창

    초록

    본 연구는 산불 위험 예측의 주요 인자인 10시간 사연료습도(10-h FMC)를 산악기상관측망 기상자료로 추정하는 방법을 마련하기 위해 수행되었다. 안성(도심지)과 홍릉 두 지점(숲 속, 숲 밖)의 자동기상관측소에서 기상인자와 10-h FMC를 측정하고 이를 이용해 10-h FMC 추정식을 도출했다. 도출한 추정식을 이용해 지난 6년간(2013~2018년) 산불발생 다발일의 10-h FMC를 분석하고 전국 10-h FMC 지도를 제작했다. 기상인자(기온, 풍속, 목재평형함수율, 강우량)와 10-h FMC의 회귀분석 결과 목재평형함수율이 가장 효율적으로 10-h FMC를 설명했음을 확인했다. 목재평형함수율을 이용해 도출한 10-h FMC 추정식은 모형 적합과 검증과정 모두에서 높은 적합도를 보였다. 각 연구지의 추정식을 서로 다른 연구지에 적용하면 모형의 적합도가 같은 연구지에서 만든 식을 적용했을 때보다 줄어들었지만 여전히 만족할 만한 결과를 보였다. 본 연구의 회귀식은 10-h FMC와 목재평형함수율 사이 강우 후 건조반응 차이와 식생 유무가 10-h FMC에 미치는 영향을 반영하지 못해 적합도가 줄어든 것으로 나타났다. 마지막으로 도출한 추정식을 사용한 공간분석을 통해 지난 6년간 산불발생 다발일의 산불 중 70% 이상이 10.5% 이하의 10-h FMC 조건에서 발생했음을 확인했다. 본 연구 결과는 산악기상관측망과 연계하여 전국 산지의 10-h FMC를 추정하는 데 사용할 수 있다. 10-h FMC는 산불 위험 예측 기초 연구 자료로 활용되어 재해 관련 국가 정책 결정에 기여할 것으로 판단된다.

    영어초록

    Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, R2 was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 21일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:17 오후