• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

K-비동기식 연합학습의 동적 윈도우 조절과 모델 안정성 향상 알고리즘 (Dynamic Window Adjustment and Model Stability Improvement Algorithm for K-Asynchronous Federated Learning)

14 페이지
기타파일
최초등록일 2025.05.31 최종저작일 2023.08
14P 미리보기
K-비동기식 연합학습의 동적 윈도우 조절과 모델 안정성 향상 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국산업정보학회
    · 수록지 정보 : 한국산업정보학회논문지 / 28권 / 4호 / 21 ~ 34페이지
    · 저자명 : 김효상, 김태준

    초록

    연합학습은 동기식 연합학습과 비동기식 연합학습으로 구분된다. 그 중에서 비동기식 연합학습은 동기식 연합학습 보다 시간적인 이득이 있으나 좋은 모델 성능을 얻기 위한 도전 과제가 남아있다. 특히 non-IID 학습 데이터셋에서 성능열화 방지, 적절한 클라이언트 선택 및 오래된 그래디언트 정보 관리는 모델 성능 개선에 있어 중요하다. 본 논문에서는 K-비동기식 연합학습을 다루고 있으며 non-IID 데이터셋을 통해 학습한다. 또한 기존 방식이 선택할 클라이언트 수에 있어서 정적인 K개를 사용한 것과 달리 동적으로 K 값을 조절하는 알고리즘을 제안하여 학습 시간을 줄일 수 있었다. 추가적으로, 오래된 그래디언트를 다루는 방식을 활용해 모델 성능 개선을 이루었음을 보여준다. 마지막으로 강한 모델 안정성을 얻기 위해 모델 성능을 평가하는 방식을 활용하였다. 실험 결과를 통해 전체 알고리즘을 활용했을 때 학습 시간 단축, 모델 정확도 향상, 모델 안정성 향상의 이득을 얻을 수 있음을 보여준다.

    영어초록

    Federated Learning is divided into synchronous federated learning and asynchronous federated learning. Asynchronous federated learning has a time advantage over synchronous federated learning, but asynchronous federated learning still has some challenges to obtain better performance. In particular, preventing performance degradation in non-IID training datasets, selecting appropriate clients, and managing stale gradient information are important for improving model performance. In this paper, we deal with K-asynchronous federated learning by using non-IID datasets. In addition, unlike traditional method using static K, we proposed an algorithm that adaptively adjusts K and we can reduce the learning time. Additionally, the we show that model performance is improved by using stale gradient handling method. Finally, we use a method of judging model performance to obtain strong model stability. Experiment results show that overall algorithm can obtain advantages of reducing training time, improving model accuracy, and improving model stability.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산업정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:30 오후