• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

유비쿼터스 환경에서 상황 인지 정보를 이용한 적응형 추천 서비스 기법 (An Adaptive Recommendation Service Scheme Using Context-Aware Information in Ubiquitous Environment)

9 페이지
기타파일
최초등록일 2025.05.29 최종저작일 2010.03
9P 미리보기
유비쿼터스 환경에서 상황 인지 정보를 이용한 적응형 추천 서비스 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 37권 / 3호 / 185 ~ 193페이지
    · 저자명 : 최정환, 류상현, 장현수, 엄영익

    초록

    최근 유비쿼터스 시대의 도래와 함께 개인화된 서비스를 제공하기 위한 다양한 서비스 모델들이 제안되어 왔으며, 특히, 사용자에게 개인화된 서비스를 선응적으로 제공하기 위한 다양한 추천 서비스 기법들이 고안되었다. 그러나, 기존의 기법들은 수 많은 데이터를 여과 과정 없이 분석함으로써 추천의 효율성이 떨어지며, 한정된 상황 인지 정보만을 추천 요소로 고려하기 때문에 사용자에게 개인화된 서비스를 제공하기에 적합하지 않다. 본 논문에서는 유비쿼터스 환경에서 사용자의 현재 상황에 가장 적합한 서비스를 제공하는 적응형 추천 서비스 기법을 제안한다. 본 기법은 사용자의 선호도 예측을 위해 누적된 사용자와 장치 간의 상호작용 상황 정보들을 이용하며, 군집 및 협업 필터링 기법을 이용하여 사용자에게 현재 상황에 적응적인 서비스를 추천한다. 군집 기법을 통해 사용자의 현재 위치에 근접한 데이터만을 분석함으로써, 추천의 효율성을 높이며, 협업 필터링을 이용하여 누적된 정보들이 충분하지 않은 상황에서도 정확한 추천을 보장한다. 끝으로, 시뮬레이션을 통해 본 기법의 성능 및 신뢰성을 평가한다.

    영어초록

    With the emergence of ubiquitous computing era, various models for providing personalized service have been proposed, and, especially, several recommendation service schemes have been proposed to give tailored services to users proactively. However, the previous recommendation service schemes utilize a wide range of data without any filtering and consider the limited context-aware information to predict user preferences so that they are not adequate to provide personalized service to users. In this paper, we propose an adaptive recommendation service scheme which proactively provides suitable services based on the current context. We use accumulated interaction contexts (IC) between users and devices for predicting the user’s preferences and recommend adaptive service based on the current context by utilizing clustering and collaborative filtering. The clustering algorithm improves efficiency of the recommendation service by focusing and analyzing the data that is collected from the locations nearby the users. Collaborative filtering guarantees an accurate recommendation, even when the data is insufficient. Finally, we evaluate the performance and the reliability of the proposed scheme by simulations.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 20일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:09 오후