• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

데이터가 부족한 플레이스를 대상으로 한 노이즈 리뷰 필터링 정확도 향상 (Improving Accuracy of Noise Review Filtering for Places with Insufficient Training Data)

9 페이지
기타파일
최초등록일 2025.05.29 최종저작일 2023.07
9P 미리보기
데이터가 부족한 플레이스를 대상으로 한 노이즈 리뷰 필터링 정확도 향상
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 28권 / 7호 / 19 ~ 27페이지
    · 저자명 : 김현규

    초록

    소셜 리뷰를 수집하는 과정에서 주어진 검색어와 상관없는 노이즈 리뷰가 검색 결과에 다수 포함될수 있으며, 이들을 필터링하기 위해 기계 학습이 이용될 수 있다. 그러나 분석하고자 하는 대상의 리뷰수가 부족한 경우, 학습 데이터 부족으로 인한 정확도 저하 문제가 발생할 수 있다. 본 논문에서는리뷰 수가 부족한 플레이스를 대상으로 노이즈 리뷰 필터링의 정확도를 높이기 위한 지도 학습 방법을소개한다. 제안 방법에서는 개별 플레이스 단위로 학습을 수행하지 않고, 특성이 유사한 여러 플레이스를 그룹으로 묶어 학습을 수행한다. 학습을 통해 얻은 분류기는 그룹에 속한 임의의 플레이스에 공통으로 적용함으로써 학습 데이터 부족 문제를 해결하고자 하였다. 제안 방법의 검증을 위해, LSTM과BERT를 이용하여 노이즈 리뷰 필터링 모델을 구현하고, 온라인에서 수집된 실제 데이터를 활용한실험을 통해 필터링 정확도를 체크하였다. 실험 결과, 제안 방법의 정확도는 평균 92.4% 수준이었으며, 리뷰 수가 100개 미만인 플레이스를 대상으로 할 경우 87.5%의 정확도를 제공하였다.

    영어초록

    In the process of collecting social reviews, a number of noise reviews irrelevant to a given search keyword can be included in the search results. To filter out such reviews, machine learning can be used.
    However, if the number of reviews is insufficient for a target place to be analyzed, filtering accuracy can be degraded due to the lack of training data. To resolve this issue, we propose a supervised learning method to improve accuracy of the noise review filtering for the places with insufficient reviews. In the proposed method, training is not performed by an individual place, but by a group including several places with similar characteristics. The classifier obtained through the training can be used for the noise review filtering of an arbitrary place belonging to the group, so the problem of insufficient training data can be resolved. To verify the proposed method, a noise review filtering model was implemented using LSTM and BERT, and filtering accuracy was checked through experiments using real data collected online. The experimental results show that the accuracy of the proposed method was 92.4% on the average, and it provided 87.5% accuracy when targeting places with less than 100 reviews.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 15일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:43 오후