• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Otsu의 방법을 개선한 멀티 스래쉬홀딩 방법

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
9 페이지
기타파일
최초등록일 2025.05.29 최종저작일 2006.09
9P 미리보기
Otsu의 방법을 개선한 멀티 스래쉬홀딩 방법
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - CI / 43권 / 5호 / 29 ~ 37페이지
    · 저자명 : 이철학, 김상운

    초록

    스레쉬홀딩(thresholding)은 영상 화소의 군집이나 강도를 이용하여 영상을 분할하는 기본 기술이다. Otsu의 스레쉬홀딩 방법에서는 정규화 된 히스토그램을 이산 밀도함수로 보아 화소의 클래스 간 분산을 최대화시키는 판별식을 이용한다. 그러나 Otsu의 방법에서는 여러 객체로 이루어진 영상에서 최적의 스레쉬홀드를 찾기 위하여 그레이레벨 전 구간에 대해 모든 가능한 분산 값을 반복적으로 계산해 보아야 하기 때문에 계산 시간이 길게 걸리는 문제가 있다. 본 논문에서는 Otsu의 방법을 개선하여 간단하지만 고속으로 멀티-레벨의 스레쉬홀드 값을 구할 수 있는 방법을 제안한다. 전체 그레이 구간 영역에 대하여 Otsu의 방법을 적용시키기 보다는 먼저 그레이 영역을 작은 부분-구간으로 나눈 다음 Otsu의 방법을 적용시키는 처리를 반복하여 원하는 개수의 스레쉬홀드를 구하는 방법이다. 본 제안 방법에서는 맨 처음 대상 영상의 그레이 구간을 2부류로 나눈다. 이 때, 분할을 위한 스레쉬홀드는 전 구간을 대상으로 Otsu의 방법을 적용하여 구한다. 그 다음에는 전체 구간이 아닌 분할된 부분-구간을 대상으로 Otsu의 방법을 적용하여 두 부류를 4부류로 나눈다. 이와 같은 처리를 원하는 개수의 스레쉬홀드를 얻을 때 까지 반복한다. 세 종류 벤취마크 영상과 50개 얼굴영상에 대해 실험한 결과, 제안 방법은 대상 영상을 특성에 맞게 고속으로 잘 분할하였으며, 패턴 매칭이나 얼굴인식에 이용될 수 있는 가능성을 확인하였다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - CI”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:26 오후