• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

영상 스티칭의 지역 차분 픽셀 평가 방법 (Local Differential Pixel Assessment Method for Image Stitching)

10 페이지
기타파일
최초등록일 2025.05.29 최종저작일 2019.09
10P 미리보기
영상 스티칭의 지역 차분 픽셀 평가 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 24권 / 5호 / 775 ~ 784페이지
    · 저자명 : 이성배, 강전호, 김규헌

    초록

    영상 스티칭은 다수의 영상을 합성하여 카메라의 좁은 시야각(Field of View) 문제를 해결하는 기술이다. 최근 동영상 기반 Panorama, Super Resolution, 360 VR(Virtual Reality) 등의 콘텐츠 사용이 증가함에 따라, 보다 빠르고 정확한 영상 스티칭 기술의 필요성이 커지고 있다. 또한, 지금까지 필요 성능을 만족시키기 위해 많은 알고리즘이 제안되고 있지만, 정확성을 측정하는 객관적 평가 방법은 표준화되지 않고 있다. 최근에서야 PSNR(Peak signal-to-noise ratio)과 SSIM(Structural similarity index method) 측정값을 제시하는 방법이 주를 이루고 있지만, 본 논문에서는 PSNR과 SSIM 측정 방식의 문제점을 밝히고, 해당 방법의 한계점을 극복하여 기하적 유사성과 광도 측정 정보를 포괄하는 지역 차분 픽셀 평가(LDPM: Local differential pixel mean)방법을 제안한다. 또한, 본 논문에서 제안하는 LDPM(Local differential pixel mean) 평가 방식을 테스트 영상을 통해 증명하고 SSIM과 비교를 통해 해당 평가 방법의 이점을 밝힌다.

    영어초록

    Image stitching is a technique for solving the problem of narrow field of view of a camera by composing multiple images. Recently, as the use of content such as Panorama, Super Resolution, and 360 VR increases, the need for faster and more accurate image stitching technology is increasing. So far, many algorithms have been proposed to satisfy the required performance, but the objective evaluation method for measuring the accuracy has not been standardized. In this paper, we present the problems of PSNR and SSIM(Structural similarity index method) measurement methods and propose a Local Differential Pixel Mean method. The LDPM evaluation method that includes geometric similarity and brightness measurement information is proved through a test, and the advantages of the evaluation method are revealed through comparison with SSIM.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:32 오후