• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

깊이 정보 재구성 및 물체의 사전 지식에 기반한 물체를 쥔 손의 자세 추적 (3D Object-grabbing Hand Tracking based on Depth Reconstruction and Prior Knowledge of Grasp)

9 페이지
기타파일
최초등록일 2025.05.27 최종저작일 2019.07
9P 미리보기
깊이 정보 재구성 및 물체의 사전 지식에 기반한 물체를 쥔 손의 자세 추적
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 46권 / 7호 / 673 ~ 681페이지
    · 저자명 : 조우진, 박갑용, 우운택

    초록

    본 논문은 깊이 데이터 재구성 및 대상 물체에 대한 사전 지식을 활용하여 실제 물체를 쥔 손의 26차원 관절 자세를 추적하는 시스템을 제안한다. 물체와 상호작용하는 손에 대한 자세 추적은 물체에 의한 가림 때문에 허공의 독립된 손 자세를 추적하는 문제에 비해 제약이 크다. 기존 대부분의 손 추적 연구들은 물체에 가려진 손 데이터를 무시하고 나머지 불충분한 입력 정보에서 최대한 정확한 자세를 추적하는 데에 초점을 두었으며, 물체와 상호작용한다는 사실이 손 자세 추정 탐색 공간을 효율적으로 줄일 수 있다는 점을 충분히 활용하지 못하였다. 본 논문에서 제안한 시스템은 가려진 손 영역의 깊이 데이터를 쥐고 있는 물체의 형태에 따라 재구성하고 입자 군집 최적화(PSO) 기법에 기반한 모델 추적기에 활용하되, 사전에 구성된 물체별 손 자세 군집을 모델 자세의 재초기화에 이용하는 방식이다. 그 결과 제안된 프로세스들이 물체를 쥔 손 자세 추적 성능을 향상시킴을 실험 평가를 통해 확인하였다.

    영어초록

    We propose a real-time 3D object-grabbing hand tracking system based on the prior knowledge of grasping an object. The problem of tracking a hand interacting with an object is more difficult compared to the issue of an isolated hand since it requires consideration of occlusion by an object. Most of the previous studies resort to the insufficient data which lacks the data of occluded hand and the information that the presence of an object may rather be a constraint on the pose of the hand. In the present work, we focused on the sequence of a hand grabbing an object by utilizing prior knowledge about grasp situation. Consequently, an excluded depth data of the hand occluded by the object was reconstructed with proper depth data and a reinitialization process was conducted based on the plausible grasp pose of the human. The effectiveness of the proposed process was verified based on model-based tracker with particle swarm optimization. Quantitative and qualitative experiments demonstrate that the proposed processes can effectively improve the performance of model-based tracker for the object-grabbing hand.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 31일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:31 오후