PARTNER
검증된 파트너 제휴사 자료

엔트로피 기반 ECoG 신호를 이용한 손과 팔꿈치 움직임 추론 (Entropy-based Discrimination of Hand and Elbow Movements Using ECoG Signals)

6 페이지
기타파일
최초등록일 2025.05.27 최종저작일 2013.12
6P 미리보기
엔트로피 기반 ECoG 신호를 이용한 손과 팔꿈치 움직임 추론
  • 미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 17권 / 4호 / 505 ~ 510페이지
    · 저자명 : 김기현, 차갑문, 이기원, 정천기, 신현출

    초록

    본 논문에서는 Electrocorticogram(ECoG) 신호를 이용하여 손과 팔꿈치의 움직임을 추론하는 방법을 제안한다. 환자로부터 다수의 채널을 이용하여 표면 근전도 신호와 ECoG 신호를 동시에 취득하였다. 추론하는 동작은 손을 쥐었다 펴는 동작과 팔꿈치를 안으로 굽히는 동작이며, 외부 자극에 의해 동작을 수행하는 방법 대신 환자의 자유의지에 의해 동작을 수행하게 하였다. 표면 근전도 신호를 이용하여 동작을 수행한 운동 시점을 찾고, ECoG 신호를 이용하여 동작을 추론한다. 각 동작의 특징을 추출하기 위하여 ECoG 신호를 전체 대역을 포함한 δ, θ, α, β, γ 총 6개의 대역을 나누어 정보 엔트로피를 구하고, 최대우도추정법을 사용하여 동작을 추정하였다. 실험 결과 감마대역의 ECoG를 사용할 경우 다른 대역을 사용할 때 보다 높은 평균 74%의 성능을 보이며, 다른 대역보다 감마 대역에서 높은 추정 성공률을 보였다. 또한 운동 시점을 기준으로 3개의 시간 구간으로 나누어 준비전위를 포함하는 'before' 구간과 'onset' 구간을 비교하였다. 'before' 구간과 'onset' 구간에서 추정 성공률은 각각 66%, 65%로 준비전위를 이용할 수 있다는 것을 알 수 있었다.

    영어초록

    In this paper, a method of estimating hand and elbow movements using electrocorticogram (ECoG) signals is proposed. Using multiple channels, surface electromyogram (EMG) signals and ECoG signals were obtained from patients simultaneously. The estimated movements were those to close and then open the hand and those to bend the elbow inward. The patients were encouraged to perform the movements in accordance with their free will instead of after being induced by external stimuli. Surface EMG signals were used to find movement time points, and ECoG signals were used to estimate the movements. To extract the characteristics of the individual movements, the ECoG signals were divided into a total of six bands (the entire band and the δ, θ, α, β, and γ bands) to obtain the information entropy, and the maximum likelihood estimation method was used to estimate the movements. The results of the experiment showed the performance averaged 74% when the ECoG of the gamma band was used, which was higher than that when other bands were used, and higher estimation success rates were shown in the gamma band than in other bands. The time of the movements was divided into three time sections based on movement time points, and the “before” section, which included the readiness potential, was compared with the “onset” section. In the “before” section and the “onset” section, estimation success rates were 66% and 65%, respectively, and thus it was determined that the readiness potential could be used.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:07 오후