• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

배수 팽창된 컨볼루션과 특징합계를 이용한 객체 검출 백본 네트워크 (Backbone Network for Object Detection with Multiple Dilated Convolutions and Feature Summation)

6 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2018.08
6P 미리보기
배수 팽창된 컨볼루션과 특징합계를 이용한 객체 검출 백본 네트워크
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 45권 / 8호 / 786 ~ 791페이지
    · 저자명 : 바니 나탈리아 쿤트조노, 고승현, 방양, 조근식

    초록

    컨볼루션 뉴럴 네트워크의 발전으로 인해 객체 탐지, 이미지 세분화 및 객체 분류 분야에서도100개 이상의 컨볼루션 레이어를 사용하는 Deep CNN을 사용하는 추세로 이어지고 있다. 그러나 Deep CNN을 사용하기 위해 많은 그래픽 메모리가 필요하며 제한된 자원이나 실시간 객체 탐지를 원하는 사람들에게는 이런 Deep CNN이 적합하지 않다. 본 논문에서는 배수 팽창된 컨볼루션과 특징합계 기반의 객체 탐지를 위한 새로운 백본 네트워크를 제안한다. 특징합계는 그래디언트를 쉽게 전달하고 컨볼빙으로 인해 발생하는 공간 정보의 손실을 최소화한다. 그리고 팽창된 컨볼루션을 사용함으로써 변수를 추가하지 않고도 개별 뉴런의 수용 영역을 넓힐 수 있다. 또한, Deep하지 않은 뉴럴 네트워크를 백본으로 사용함으로써 제한된 자원으로 이미지넷 데이터 세트에서 사전 교육을 하지 않더라도 제안하는 네트워크를 사용할수 있다. Pascal VOC 및 MS COCO 데이터를 사용한 실험 결과 제안된 네트워크는 각각 71%와 38.2% 의 정확도를 보였다.

    영어초록

    The advancement of CNN leads to the trend of using very deep convolutional neural network which contains more than 100 layers not only for object detection, but also for image segmentation and object classification. However, deep CNN requires lots of resources, and so is not suitable for people who have limited resources or real time requirements. In this paper, we propose a new backbone network for object detection with multiple dilated convolutions and feature summation.
    Feature summation enables easier flow of gradients and minimizes loss of spatial information that is caused by convolving. By using multiple dilated convolution, we can widen the receptive field of individual neurons without adding more parameters. Furthermore, by using a shallow neural network as a backbone network, our network can be trained and used in an environment with limited resources and without pre-training it in ImageNet dataset. Experiments demonstrate we achieved 71% and 38.2% of accuracy on Pascal VOC and MS COCO dataset, respectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 26일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:13 오후