PARTNER
검증된 파트너 제휴사 자료

다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상 (Improvement of precipitation forecasting skill of ECMWF data using multi-layer perceptron technique)

8 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2019.07
8P 미리보기
다층퍼셉트론 기법을 이용한 ECMWF 예측자료의 강수예측 정확도 향상
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 52권 / 7호 / 475 ~ 482페이지
    · 저자명 : 이승수, 김가영, 윤순조, 안현욱

    초록

    2주에서 2개월까지 선행기간을 가지는 계절내-계절(Subseasonal-to-Seasonal, S2S) 예측결과는 산업전반에 걸쳐 다양한 분야에 활용이 가능할 것으로 기대되고 있으나, 일기예보나 중장기 예보대비 낮은 예측성으로 인하여 현재까지 활용성이 매우 낮은 실정이다. 본 연구에서는 기계학습 기법중 비선형회귀 분야에서 좋은 결과를 보여주는 다층퍼셉트론 기법을 이용하여 S2S 예측자료의 후처리를 통한 국내 영역에서의 강수예측성 향상에 관한 연구를 수행하였다. 후처리 모형의 학습을 위한 입력자료로는 ECMWF의 S2S 과거예측(Hindcast) 정보를 이용하였으며 양분예보기법에 기반하여 학습된 다층퍼셉트론 모델을 이용한 후처리 결과와의 비교 분석이 수행되었다. 비교분석 결과 편차도(Bias score)는 평균 59.7% 감소하였고, 정확도(Accuracy)는 124.3% 증가하였으며, 임계성공지수(Critical Success Index)는 88.5% 향상된 것으로 분석되었다. 탐지확률(Probability of detection)의 경우 원자료 대비 평균 9.5% 감소하였으나 이는 ECMWF의 예측모델이 강수의 발생일을 과도하게 예측하였기 때문인 것으로 분석되었다. 본 연구 수행 결과 비록 ECMWF의 S2S 예측자료의 예측성이 낮더라도 후처리를 통해 예측성을 향상 시킬 수 있음을 확인하였으며, 본 연구 결과는 향후 수자원과 농업 분야에서 S2S 자료의 활용성을 높이는데 도움이 될 수 있을 것으로 판단된다.

    영어초록

    Subseasonal-to-Seasonal (S2S) prediction information which have 2 weeks to 2 months lead time are expected to be used through many parts of industry fields, but utilizability is not reached to expectation because of lower predictability than weather forecast and mid- / long-term forecast. In this study, we used multi-layer perceptron (MLP) which is one of machine learning technique that was built for regression training in order to improve predictability of S2S precipitation data at South Korea through post-processing. Hindcast information of ECMWF was used for MLP training and the original data were compared with trained outputs based on dichotomous forecast technique. As a result, Bias score, accuracy, and Critical Success Index (CSI) of trained output were improved on average by 59.7%, 124.3% and 88.5%, respectively. Probability of detection (POD) score was decreased on average by 9.5% and the reason was analyzed that ECMWF’s model excessively predicted precipitation days. In this study, we confirmed that predictability of ECMWF’s S2S information can be improved by post-processing using MLP even the predictability of original data was low. The results of this study can be used to increase the capability of S2S information in water resource and agricultural fields.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:28 오후